Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jul;76(7):3174–3178. doi: 10.1073/pnas.76.7.3174

Nucleoside triphosphate regeneration decreases the frequency of translation errors.

P C Jelenc, C G Kurland
PMCID: PMC383786  PMID: 290995

Abstract

The addition of naturally occurring polyamines and inorganic ions to an in vitro protein-synthesizing system improved the extent and fidelity of translation. In such an optimized system, regeneration of the nucleoside triphosphates with phosphoenolpyruvate and pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) reduced further the missense error frequency to the in vivo level as well as enhanced the extent of translation. The effect of nucleoside triphosphate regeneration was shown to be due primarily to the increase in the ratio of adenosine and guanosine triphosphates to their hydrolysis products and only marginally due to the increase in the absolute concentrations of the nucleoside triphosphates.

Full text

PDF
3174

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birge E. A., Kurland C. G. Reversion of a streptomycin-dependent strain of Escherichia coli. Mol Gen Genet. 1970;109(4):356–369. doi: 10.1007/BF00267704. [DOI] [PubMed] [Google Scholar]
  2. DAVIES J., GILBERT W., GORINI L. STREPTOMYCIN, SUPPRESSION, AND THE CODE. Proc Natl Acad Sci U S A. 1964 May;51:883–890. doi: 10.1073/pnas.51.5.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DUBIN D. T., ROSENTHAL S. M. The acetylation of polyamines in Escherichia coli. J Biol Chem. 1960 Mar;235:776–782. [PubMed] [Google Scholar]
  4. Edelmann P., Gallant J. Mistranslation in E. coli. Cell. 1977 Jan;10(1):131–137. doi: 10.1016/0092-8674(77)90147-7. [DOI] [PubMed] [Google Scholar]
  5. FRIEDMAN S. M., WEINSTEIN I. B. LACK OF FIDELITY IN THE TRANSLATION OF SYNTHETIC POLYRIBONUCLEOTIDES. Proc Natl Acad Sci U S A. 1964 Oct;52:988–996. doi: 10.1073/pnas.52.4.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gavrilova L. P., Kostiashkina O. E., Koteliansky V. E., Rutkevitch N. M., Spirin A. S. Factor-free ("non-enzymic") and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J Mol Biol. 1976 Mar 15;101(4):537–552. doi: 10.1016/0022-2836(76)90243-6. [DOI] [PubMed] [Google Scholar]
  7. Hardy S. J., Kurland C. G., Voynow P., Mora G. The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2897–2905. doi: 10.1021/bi00835a031. [DOI] [PubMed] [Google Scholar]
  8. Hopfield J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4135–4139. doi: 10.1073/pnas.71.10.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Isaksson L. A., Sköld S. E., Skjöldebrand J., Takata R. A procedure for isolation of spontaneous mutants with temperature sensitive of RNA and/or protein. Mol Gen Genet. 1977 Nov 18;156(3):233–237. doi: 10.1007/BF00267177. [DOI] [PubMed] [Google Scholar]
  10. Kurland C. G. The role of guanine nucleotides in protein biosynthesis. Biophys J. 1978 Jun;22(3):373–392. doi: 10.1016/S0006-3495(78)85494-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOFTFIELD R. B. THE FREQUENCY OF ERRORS IN PROTEIN BIOSYNTHESIS. Biochem J. 1963 Oct;89:82–92. doi: 10.1042/bj0890082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LUBIN M., ENNIS H. L. ON THE ROLE OF INTRACELLULAR POTASSIUM IN PROTEIN SYNTHESIS. Biochim Biophys Acta. 1964 Apr 27;80:614–631. doi: 10.1016/0926-6550(64)90306-8. [DOI] [PubMed] [Google Scholar]
  13. Lekover T. E., Kurland C. G. Ribosomes from a streptomycin-dependent strain of Escherichia coli. J Mol Biol. 1967 May 14;25(3):497–504. doi: 10.1016/0022-2836(67)90201-x. [DOI] [PubMed] [Google Scholar]
  14. Likover T. E., Kurland C. G. The contribution of DNA to translation errors induced by streptomycin in vitro. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2385–2392. doi: 10.1073/pnas.58.6.2385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Loftfield R. B., Vanderjagt D. The frequency of errors in protein biosynthesis. Biochem J. 1972 Aug;128(5):1353–1356. doi: 10.1042/bj1281353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Michaels R., Tchen T. T. Polyamine content of nucleated and enucleated Escherichia coli cells. J Bacteriol. 1968 May;95(5):1966–1967. doi: 10.1128/jb.95.5.1966-1967.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NIRENBERG M. W., MATTHAEI J. H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1588–1602. doi: 10.1073/pnas.47.10.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ninio J. Kinetic amplification of enzyme discrimination. Biochimie. 1975;57(5):587–595. doi: 10.1016/s0300-9084(75)80139-8. [DOI] [PubMed] [Google Scholar]
  19. Plowman K. M., Krall A. R. A kinetic study of nucleotide interactions with pyruvate kinase. Biochemistry. 1965 Dec;4(12):2809–2814. doi: 10.1021/bi00888a035. [DOI] [PubMed] [Google Scholar]
  20. SZER W., OCHOA S. COMPLEXING ABILITY AND CODING PROPERTIES OF SYNTHETIC POLYNUCLEOTIDES. J Mol Biol. 1964 Jun;8:823–834. doi: 10.1016/s0022-2836(64)80163-7. [DOI] [PubMed] [Google Scholar]
  21. Sakai T. T., Cohen S. S. Effects of polyamines on the structure and reactivity of tRNA. Prog Nucleic Acid Res Mol Biol. 1976;17:15–42. doi: 10.1016/s0079-6603(08)60064-1. [DOI] [PubMed] [Google Scholar]
  22. Tabor C. W., Kellogg P. D. The effect of isolation conditions on the polyamine content of Escherichia coli ribosomes. J Biol Chem. 1967 Mar 10;242(5):1044–1052. [PubMed] [Google Scholar]
  23. Thompson R. C., Stone P. J. Proofreading of the codon-anticodon interaction on ribosomes. Proc Natl Acad Sci U S A. 1977 Jan;74(1):198–202. doi: 10.1073/pnas.74.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. WOOD W. B., BERG P. The effect of enzymatically synthesized ribonucleic acid on amino acid incorporation by a soluble protein-ribosome system from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:94–104. doi: 10.1073/pnas.48.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES