Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jul;76(7):3382–3386. doi: 10.1073/pnas.76.7.3382

Bimane fluorescent labels: labeling of normal human red cells under physiological conditions.

N S Kosower, E M Kosower, G L Newton, H M Ranney
PMCID: PMC383829  PMID: 291011

Abstract

The bimane fluorescent labels, monobromobimane, dibromobimane, and monobromotrimethylammoniobimane, are derivatives of syn-9,10-dioxabimane:1,5-diazabicyclo[3.3.0]octa-3,6-diene-2,8-dione. They efficiently label hemoglobin (reactive thiol groups), membrane proteins, and glutathione of normal human red cells under physiological conditions. Monobromobimane and dibromobimane are effective on intact cells while red cell membranes may be impermeable to the positively charged monobromotrimethylammoniobimane, the latter being effective only on lysed cells. These bimane labels provide a class of labeling agents that may have wide applicability in biological materials.

Full text

PDF
3382

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  2. Clegg J. B., Naughton M. A., Weatherall D. J. Separation of the alpha and beta-chains of human hemoglobin. Nature. 1968 Jul 6;219(5149):69–70. doi: 10.1038/219069a0. [DOI] [PubMed] [Google Scholar]
  3. Cross J. W., Briggs W. R. Labeling of membranes from erythrocytes and corn with fluorescamine. Biochim Biophys Acta. 1977 Nov 15;471(1):67–77. doi: 10.1016/0005-2736(77)90394-7. [DOI] [PubMed] [Google Scholar]
  4. DAWSON R. M., HEMINGTON N., LINDSAY D. B. The phospholipids of the erythrocyte 'ghosts' of various species. Biochem J. 1960 Nov;77:226–230. doi: 10.1042/bj0770226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edidin M., Zagyansky Y., Lardner T. J. Measurement of membrane protein lateral diffusion in single cells. Science. 1976 Feb 6;191(4226):466–468. doi: 10.1126/science.1246629. [DOI] [PubMed] [Google Scholar]
  6. FANELLI A. R., ANTONINI E., CAPUTO A. Studies on the structure of hemoglobin. I. Physicochemical properties of human globin. Biochim Biophys Acta. 1958 Dec;30(3):608–615. doi: 10.1016/0006-3002(58)90108-2. [DOI] [PubMed] [Google Scholar]
  7. Fowler V., Branton D. Lateral mobility of human erythrocyte integral membrane proteins. Nature. 1977 Jul 7;268(5615):23–26. doi: 10.1038/268023a0. [DOI] [PubMed] [Google Scholar]
  8. Hawkes S. P., Meehan T. D., Bissell M. J. The use of fluorescamine as a probe for labeling the outer surface of the plasma membrane. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1226–1233. doi: 10.1016/0006-291x(76)90328-4. [DOI] [PubMed] [Google Scholar]
  9. Kanaoka Y. Organic fluorescence reagents in the study of enzymes and proteins. Angew Chem Int Ed Engl. 1977 Mar;16(3):137–147. doi: 10.1002/anie.197701371. [DOI] [PubMed] [Google Scholar]
  10. Kosower N. S., Kosower E. M., Koppel R. L. Sensitivity of hemoglobin thiol groups within red blood cells of rat during oxidation of glutathione. Eur J Biochem. 1977 Aug 1;77(3):529–534. doi: 10.1111/j.1432-1033.1977.tb11695.x. [DOI] [PubMed] [Google Scholar]
  11. Kosower N. S., Kosower E. M., Lustig S., Pluznik D. H. F20C, a new fluorescent membrane probe, moves more slowly in malignant and mitogen-transformed cell membranes than in normal cell membranes. Biochim Biophys Acta. 1978 Feb 2;507(1):128–136. doi: 10.1016/0005-2736(78)90380-2. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Peters R., Peters J., Tews K. H., Bähr W. A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim Biophys Acta. 1974 Nov 15;367(3):282–294. doi: 10.1016/0005-2736(74)90085-6. [DOI] [PubMed] [Google Scholar]
  14. Puchinger H., von Sengbusch G., Sernetz M. Rapid fluorescence labeling of living cells by fluorescamine. Anal Biochem. 1976 Feb;70(2):639–642. doi: 10.1016/0003-2697(76)90494-2. [DOI] [PubMed] [Google Scholar]
  15. Reid M. S., Bieleski R. L. A simple apparatus for vertical flat-sheet polyacrylamide gel electrophoresis. Anal Biochem. 1968 Mar;22(3):374–381. doi: 10.1016/0003-2697(68)90278-9. [DOI] [PubMed] [Google Scholar]
  16. Sekine T., Ando K., Machida M., Kanaoka Y. Fluorescent thiol reagents. V. Microfluorometry of thiol compounds with a fluorescent-labeled maleimide. Anal Biochem. 1972 Aug;48(2):557–568. doi: 10.1016/0003-2697(72)90111-x. [DOI] [PubMed] [Google Scholar]
  17. Steck T. L., Kant J. A. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol. 1974;31:172–180. doi: 10.1016/0076-6879(74)31019-1. [DOI] [PubMed] [Google Scholar]
  18. Willingham M. C., Pastan I. The visualization of fluorescent proteins in living cells by video intensification microscopy (VIM). Cell. 1978 Mar;13(3):501–507. doi: 10.1016/0092-8674(78)90323-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES