Abstract
The uptake of citrate and alpha-ketoglutarate by membrane vesicles from rabbit renal brush border was studied by a rapid filtration technique. Both compounds exhibited transport characteristics similar to those seen for the sodium-dependent cotransport systems previously described for sugars and amino acids in brush border membranes. The estimated sodium-dependent Vmax and Km were 17 nmol per mg of protein per min and 0.18 mM for citrate and 17 nmol per mg of protein per min and 1.0 mM for alpha-ketoglutarate. The initial rate of citrate transport was 5 times that of sugars and amino acids under comparable conditions. Uptake rates of 0.1 mM citrate and alpha-ketoglutarate were inhibited by greater than 90% by 10 mM succinate, malate, fumarate, or oxaloacetate, indicating the presence in the brush border membrane of a transport system highly specialized for the renal conservation of intermediates of the tricarboxylic acid cycle.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson P. S., Sacktor B. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J Biol Chem. 1975 Aug 10;250(15):6032–6039. [PubMed] [Google Scholar]
- Beck J. C., Sacktor B. The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J Biol Chem. 1978 Aug 10;253(15):5531–5535. [PubMed] [Google Scholar]
- DAHLQVIST A. METHOD FOR ASSAY OF INTESTINAL DISACCHARIDASES. Anal Biochem. 1964 Jan;7:18–25. doi: 10.1016/0003-2697(64)90115-0. [DOI] [PubMed] [Google Scholar]
- Fass S. J., Hammerman M. R., Sacktor B. Transport of amino acids in renal brush border membrane vesicles. Uptake of the neutral amino acid L-alanine. J Biol Chem. 1977 Jan 25;252(2):583–590. [PubMed] [Google Scholar]
- Fujita M., Matsui H., Nagano K., Nakao M. Asymmetric distribution of ouabain-sensitive ATPase activity in rat intestinal mucosa. Biochim Biophys Acta. 1971 Apr 13;233(2):404–408. doi: 10.1016/0005-2736(71)90337-3. [DOI] [PubMed] [Google Scholar]
- Mircheff A. K., Wright E. M. Analytical isolation of plasma membranes of intestinal epithelial cells: identification of Na, K-ATPase rich membranes and the distribution of enzyme activities. J Membr Biol. 1976 Sep 17;28(4):309–333. doi: 10.1007/BF01869703. [DOI] [PubMed] [Google Scholar]
- Murer H., Sigrist-Nelson K., Hopfer U. On the mechanism of sugar and amino acid interaction in intestinal transport. J Biol Chem. 1975 Sep 25;250(18):7392–7396. [PubMed] [Google Scholar]
- PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSENBERG L. E., BLAIR A., SEGAL S. Transport of amino acids by slices of rat-kidney cortex. Biochim Biophys Acta. 1961 Dec 23;54:479–488. doi: 10.1016/0006-3002(61)90088-9. [DOI] [PubMed] [Google Scholar]
- Segal S., Rosenhagen M., Rea C. Developmental and other characteristics of -methyl-D-glucoside transport by rat kidney cortex slices. Biochim Biophys Acta. 1973 Jan 26;291(2):519–530. doi: 10.1016/0005-2736(73)90503-8. [DOI] [PubMed] [Google Scholar]