Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jul;76(7):3482–3485. doi: 10.1073/pnas.76.7.3482

Reciprocal stimulation of negatively selected high-responder and low-responder T cells in virus-infected recipients.

J R Bennink, P C Doherty
PMCID: PMC383850  PMID: 115003

Abstract

After depletion of alloreactive potential, immunologically naive T cells from C57BL/6J (Kb-Db) mice (B6) can be induced to respond to vaccinia virus in the context of both H-2Kk and H-2Db when stimulated in B10.A(4R) (Kk-Db) recipients. However, negatively selected B10.A(2R) (Kk-Db) T cells respond to H-2Db-vaccinia virus but not to H-2Kb-vaccinia virus when primed in an irradiated B6 environment. The B6 mouse strain is a high responder to vaccinia virus associated with H-2Db, whereas the B10.A(2R) and B10.A(4R) recombinants are low responders. Responsiveness in the context of H-2Db is thus recognized when the only homology between T cell and recipient is at the H-2D locus and is suppressed when H-2Kk is also present in both situations. The fact that negatively selected H-2Kb-Db T cells can be induced to recognize H-2Kk-vaccinia virus may reflect the existence of an "altered self" complex which is recognized via a single receptor, perhaps drawn from an alloreactive T-cell repertoire. At least in some instances, patterns of T-cell responsiveness are not totally constrained by the spectrum of H-2 antigens encountered in thymus.

Full text

PDF
3482

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellgrau D., Wilson D. B. Immunological studies of T-cell receptors. II. Limited polymorphism of idiotypic determinants on T-cell receptors specific for major histocompatibility complex alloantigens. J Exp Med. 1979 Jan 1;149(1):234–243. doi: 10.1084/jem.149.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennink J. R., Doherty P. C. Different rules govern help for cytotoxic T cells and B cells. Nature. 1978 Dec 21;276(5690):829–831. doi: 10.1038/276829a0. [DOI] [PubMed] [Google Scholar]
  3. Bennink J. R., Doherty P. C. T-cell populations specifically depleted of alloreactive potential cannot be induced to lyse H-2-different virus-infected target cells. J Exp Med. 1978 Jul 1;148(1):128–135. doi: 10.1084/jem.148.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Billings P., Burakoff S. J., Dorf M. E., Benacerraf B. Genetic control of cytolytic t-lymphocyte responses. II. The role of the host genotype in parental leads to F1 radiation chimeras in the control of the specificity of cytolytic T-lymphocyte responses to trinitrophenyl-modified syngeneic cells. J Exp Med. 1978 Aug 1;148(2):352–359. doi: 10.1084/jem.148.2.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blanden R. V., McKenzie I. F., Kees U., Melvold R. W., Kohn H. I. Cytotoxic T-cell response to Ectromelia virus-infected cells. Different H-2 requirements for triggering precursor T-cell induction or lysis by effector T cells defined by the BALB/c-H-2db mutation. J Exp Med. 1977 Sep 1;146(3):869–880. doi: 10.1084/jem.146.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corley R. B., Kindred B., Lefkovits I. Positive and negative allogeneic effects mediated by MLR-primed lymphocytes: quantitation by limiting dilution analysis. J Immunol. 1978 Sep;121(3):1082–1089. [PubMed] [Google Scholar]
  7. Doherty P. C., Bennink J. C. Vaccinia-specific cytotoxic T-cell responses in the context of H-2 antigens not encountered in thymus may reflect aberrant recognition of a virus-H-2 complex. J Exp Med. 1979 Jan 1;149(1):150–157. doi: 10.1084/jem.149.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doherty P. C., Biddison W. E., Bennink J. R., Knowles B. B. Cytotoxic T-cell responses in mice infected with influenza and vaccinia viruses vary in magnitude with H-2 genotype. J Exp Med. 1978 Aug 1;148(2):534–543. doi: 10.1084/jem.148.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jerne N. K. The somatic generation of immune recognition. Eur J Immunol. 1971 Jan;1(1):1–9. doi: 10.1002/eji.1830010102. [DOI] [PubMed] [Google Scholar]
  10. Katz D. H. The allogeneic effect on immune responses: model for regulatory influences of T lymphocytes on the immune system. Transplant Rev. 1972;12:141–179. doi: 10.1111/j.1600-065x.1972.tb00055.x. [DOI] [PubMed] [Google Scholar]
  11. Pang T., Blanden R. V. Regulation of the T-cell response to ectromelia virus infection. I. Feedback suppression by effector T cells. J Exp Med. 1976 Mar 1;143(3):469–481. doi: 10.1084/jem.143.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sprent J., von Boehmer H. Helper function of T cells depleted of alloantigen-reactive lymphocytes by filtration through irradiated F1 hybrid recipients. I. Failure to collaborate with allogeneic B cells in a secondary response to sheep erythrocytes measured in vivo. J Exp Med. 1976 Sep 1;144(3):617–626. doi: 10.1084/jem.144.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Zinkernagel R. M., Althage A., Cooper S., Callahan G., Klein J. In irradiation chimeras, K or D regions of the chimeric host, not of the donor lymphocytes, determine immune responsiveness of antiviral cytotoxic T cells. J Exp Med. 1978 Sep 1;148(3):805–810. doi: 10.1084/jem.148.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zinkernagel R. M., Althage A., Cooper S., Kreeb G., Klein P. A., Sefton B., Flaherty L., Stimpfling J., Shreffler D., Klein J. Ir-genes in H-2 regulate generation of anti-viral cytotoxic T cells. Mapping to K or D and dominance of unresponsiveness. J Exp Med. 1978 Aug 1;148(2):592–606. doi: 10.1084/jem.148.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zinkernagel R. M., Callahan G. N., Althage A., Cooper S., Klein P. A., Klein J. On the thymus in the differentiation of "H-2 self-recognition" by T cells: evidence for dual recognition? J Exp Med. 1978 Mar 1;147(3):882–896. doi: 10.1084/jem.147.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Zinkernagel R. M., Callahan G. N., Althage A., Cooper S., Streilein J. W., Klein J. The lymphoreticular system in triggering virus plus self-specific cytotoxic T cells: evidence for T help. J Exp Med. 1978 Mar 1;147(3):897–911. doi: 10.1084/jem.147.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zinkernagel R. M., Doherty P. C. Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature. 1974 Oct 11;251(5475):547–548. doi: 10.1038/251547a0. [DOI] [PubMed] [Google Scholar]
  18. von Boehmer H., Haas W., Jerne N. K. Major histocompatibility complex-linked immune-responsiveness is acquired by lymphocytes of low-responder mice differentiating in thymus of high-responder mice. Proc Natl Acad Sci U S A. 1978 May;75(5):2439–2442. doi: 10.1073/pnas.75.5.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES