Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Sep 17;93(19):10377–10382. doi: 10.1073/pnas.93.19.10377

A novel nonneuronal catecholaminergic system: exocrine pancreas synthesizes and releases dopamine.

E Mezey 1, G Eisenhofer 1, G Harta 1, S Hansson 1, L Gould 1, B Hunyady 1, B J Hoffman 1
PMCID: PMC38392  PMID: 8816808

Abstract

Cells of the exocrine pancreas produce digestive enzymes potentially harmful to the intestinal mucosa. Dopamine has been reported to protect against mucosal injury. In looking for the source of dopamine in the small intestine, we found that the duodenal juice contains high levels of dopamine and that the pancreas itself has a high dopamine [and dihydroxyphenylalanine (dopa)] content that does not change significantly after chemical sympathectomy. Furthermore, we were able to demonstrate tyrosine hydroxylase (TH) activity in control pancreas as well as in pancreas from rats after chemical sympathectomy. Immunostaining and in situ hybridization histochemistry confirmed both the presence of TH, dopamine, and the dopamine transporter, and the mRNAs encoding TH and dopamine transporter, and the presence of both types of vesicular monoamine transporters in the exocrine cells of the pancreas. Since there are no catecholaminergic enteric ganglia in the pancreas, the above results indicate that pancreatic cells have all the characteristics of dopamine-producing cells. We suggest that the pancreas is an important source of nonneuronal dopamine in the body, and that this dopamine has a role in protecting the intestinal mucosa and suggests that dopamine D1b receptor agonists might be used to help mucosal healing in the gastrointestinal tract.

Full text

PDF
10377

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arluison M., Dietl M., Thibault J. Ultrastructural morphology of dopaminergic nerve terminals and synapses in the striatum of the rat using tyrosine hydroxylase immunocytochemistry: a topographical study. Brain Res Bull. 1984 Aug;13(2):269–285. doi: 10.1016/0361-9230(84)90128-x. [DOI] [PubMed] [Google Scholar]
  2. Berghorn K. A., Bonnett J. H., Hoffman G. E. cFos immunoreactivity is enhanced with biotin amplification. J Histochem Cytochem. 1994 Dec;42(12):1635–1642. doi: 10.1177/42.12.7983364. [DOI] [PubMed] [Google Scholar]
  3. Bradley D. J., Towle H. C., Young W. S., 3rd Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci. 1992 Jun;12(6):2288–2302. doi: 10.1523/JNEUROSCI.12-06-02288.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiodo L. A., Kapatos G. Membrane properties of identified mesencephalic dopamine neurons in primary dissociated cell culture. Synapse. 1992 Aug;11(4):294–309. doi: 10.1002/syn.890110405. [DOI] [PubMed] [Google Scholar]
  5. Dietl M., Arluison M., Mouchet P., Feuerstein C., Manier M., Thibault J. Immunohistochemical demonstration of catecholaminergic cell bodies in the spinal cord of the rat. Preliminary note. Histochemistry. 1985;82(4):385–389. doi: 10.1007/BF00494068. [DOI] [PubMed] [Google Scholar]
  6. Eisenhofer G., Aneman A., Hooper D., Holmes C., Goldstein D. S., Friberg P. Production and metabolism of dopamine and norepinephrine in mesenteric organs and liver of swine. Am J Physiol. 1995 Apr;268(4 Pt 1):G641–G649. doi: 10.1152/ajpgi.1995.268.4.G641. [DOI] [PubMed] [Google Scholar]
  7. Eisenhofer G., Goldstein D. S., Stull R., Keiser H. R., Sunderland T., Murphy D. L., Kopin I. J. Simultaneous liquid-chromatographic determination of 3,4-dihydroxyphenylglycol, catecholamines, and 3,4-dihydroxyphenylalanine in plasma, and their responses to inhibition of monoamine oxidase. Clin Chem. 1986 Nov;32(11):2030–2033. [PubMed] [Google Scholar]
  8. Erickson J. D., Eiden L. E., Hoffman B. J. Expression cloning of a reserpine-sensitive vesicular monoamine transporter. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10993–10997. doi: 10.1073/pnas.89.22.10993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Furuta Y., Hashimoto K., Washizaki M. beta-Adrenoceptor stimulation of exocrine secretion from the rat pancreas. Br J Pharmacol. 1978 Jan;62(1):25–29. doi: 10.1111/j.1476-5381.1978.tb07002.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glavin G. B., Dugani A. M. Effects of dopamine agonists and antagonists on gastric acid secretion and stress responses in rats. Life Sci. 1987 Sep 14;41(11):1397–1408. doi: 10.1016/0024-3205(87)90615-1. [DOI] [PubMed] [Google Scholar]
  11. Glavin G. B., Szabo S. Dopamine in gastrointestinal disease. Dig Dis Sci. 1990 Sep;35(9):1153–1161. doi: 10.1007/BF01537589. [DOI] [PubMed] [Google Scholar]
  12. Graffner H., Ekelund M., Håkanson R., Rosengren E. Effect of different denervation procedures on catecholamines in the gut. Scand J Gastroenterol. 1985 Dec;20(10):1276–1280. doi: 10.3109/00365528509089289. [DOI] [PubMed] [Google Scholar]
  13. Grima B., Lamouroux A., Blanot F., Biguet N. F., Mallet J. Complete coding sequence of rat tyrosine hydroxylase mRNA. Proc Natl Acad Sci U S A. 1985 Jan;82(2):617–621. doi: 10.1073/pnas.82.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harris J., Ayyub C., Shaw G. A molecular dissection of the carboxyterminal tails of the major neurofilament subunits NF-M and NF-H. J Neurosci Res. 1991 Sep;30(1):47–62. doi: 10.1002/jnr.490300107. [DOI] [PubMed] [Google Scholar]
  15. Hashimoto K., Oguro K., Furuta Y. Species difference in the secretory response to dopamine in the pancreas of dogs, cats, rabbits and rats. Arch Histol Jpn. 1977;40 (Suppl):129–132. doi: 10.1679/aohc1950.40.supplement_129. [DOI] [PubMed] [Google Scholar]
  16. Hashimoto K., Sato S., Takeuchi O. Effect of dopamine on pancreatic secretion in the dog. Br J Pharmacol. 1971 Dec;43(4):739–746. doi: 10.1111/j.1476-5381.1971.tb07209.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Iijima F., Iwatsuki K., Chiba S. Effects of dopamine on exocrine secretion and cyclic nucleotide concentration in the dog pancreas. Eur J Pharmacol. 1983 Sep 2;92(3-4):191–197. doi: 10.1016/0014-2999(83)90286-8. [DOI] [PubMed] [Google Scholar]
  18. Kilty J. E., Lorang D., Amara S. G. Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science. 1991 Oct 25;254(5031):578–579. doi: 10.1126/science.1948035. [DOI] [PubMed] [Google Scholar]
  19. Liu Y., Peter D., Roghani A., Schuldiner S., Privé G. G., Eisenberg D., Brecha N., Edwards R. H. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell. 1992 Aug 21;70(4):539–551. doi: 10.1016/0092-8674(92)90425-c. [DOI] [PubMed] [Google Scholar]
  20. MacNaughton W. K., Wallace J. L. A role for dopamine as an endogenous protective factor in the rat stomach. Gastroenterology. 1989 Apr;96(4):972–980. doi: 10.1016/0016-5085(89)91612-0. [DOI] [PubMed] [Google Scholar]
  21. NAGATSU T., LEVITT M., UDENFRIEND S. TYROSINE HYDROXYLASE. THE INITIAL STEP IN NOREPINEPHRINE BIOSYNTHESIS. J Biol Chem. 1964 Sep;239:2910–2917. [PubMed] [Google Scholar]
  22. Naoi M., Takahashi T., Nagatsu T. Simple assay procedure for tyrosine hydroxylase activity by high-performance liquid chromatography employing coulometric detection with minimal sample preparation. J Chromatogr. 1988 Jun 3;427(2):229–238. doi: 10.1016/0378-4347(88)80125-7. [DOI] [PubMed] [Google Scholar]
  23. Nishiwaki H., Koh I., Kanazawa G., Hiura A., Satake K., Umeyama K. [Renal microcirculation in experimental acute pancreatitis of dogs--the effect of pancreatic protease inhibitor and dopamine]. Nihon Geka Gakkai Zasshi. 1988 Dec;89(12):1990–1996. [PubMed] [Google Scholar]
  24. Oomori Y., Iuchi H., Ishikawa K., Satoh Y., Ono K. Immunocytochemical study of tyrosine hydroxylase and dopamine beta-hydroxylase immunoreactivities in the rat pancreas. Histochemistry. 1994 Jun;101(5):313–323. doi: 10.1007/BF00268992. [DOI] [PubMed] [Google Scholar]
  25. Orloff L. A., Orloff M. S., Bunnett N. W., Walsh J. H. Dopamine and norepinephrine in the alimentary tract changes after chemical sympathectomy and surgical vagotomy. Life Sci. 1985 Apr 29;36(17):1625–1631. doi: 10.1016/0024-3205(85)90365-0. [DOI] [PubMed] [Google Scholar]
  26. Quansah F. A., Klatt C., Feldman J. M. Effects of diabetes mellitus and chemical sympathectomy on tissue monoamine oxidase activity and norepinephrine concentration in the golden hamster. Metabolism. 1981 Mar;30(3):242–247. doi: 10.1016/0026-0495(81)90148-7. [DOI] [PubMed] [Google Scholar]
  27. Rohrer H., Acheson A. L., Thibault J., Thoenen H. Developmental potential of quail dorsal root ganglion cells analyzed in vitro and in vivo. J Neurosci. 1986 Sep;6(9):2616–2624. doi: 10.1523/JNEUROSCI.06-09-02616.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shen J., Huang M. K., Wu F. L. Hemodynamic changes during acute pancreatitis and the dopamine therapy. Chin Med J (Engl) 1990 Mar;103(3):201–207. [PubMed] [Google Scholar]
  29. Sikiric P., Rotkvic I., Mise S., Petek M., Rucman R., Seiwerth S., Zjacic-Rotkvic V., Duvnjak M., Jagic V., Suchanek E. Dopamine agonists prevent duodenal ulcer relapse. A comparative study with famotidine and cimetidine. Dig Dis Sci. 1991 Jul;36(7):905–910. doi: 10.1007/BF01297139. [DOI] [PubMed] [Google Scholar]
  30. Sikirić P., Rotkvić I., Mise S., Krizanac S., Gjuris V., Jagić V., Suchanek E., Petek M., Udovicić I., Geber J. The influence of dopamine receptor agonists and an antagonist on acute pancreatitis in rats. Eur J Pharmacol. 1988 Mar 15;147(3):321–326. doi: 10.1016/0014-2999(88)90164-1. [DOI] [PubMed] [Google Scholar]
  31. Steinbusch H. W., Wouterlood F. G., de Vente J., Bol J. G., Berkenbosch F. Immunohistochemical localization of monoamines and cyclic nucleotides. Their application in quantitative immunofluorescence studies and tracing monoaminergic neuronal connections. Acta Histochem Suppl. 1988;35:86–106. [PubMed] [Google Scholar]
  32. Takeuchi S., Okamura T., Shonai K., Imamura S. Distribution of catecholaminergic receptors in the rat's pancreas islet. Nihon Ika Daigaku Zasshi. 1990 Apr;57(2):119–126. doi: 10.1272/jnms1923.57.119. [DOI] [PubMed] [Google Scholar]
  33. Thibault J., Vidal D., Gros F. In vitro translation of mRNA from rat pheochromocytoma tumors, characterization of tyrosine hydroxylase. Biochem Biophys Res Commun. 1981 Apr 15;99(3):960–968. doi: 10.1016/0006-291x(81)91256-0. [DOI] [PubMed] [Google Scholar]
  34. Tiberi M., Jarvie K. R., Silvia C., Falardeau P., Gingrich J. A., Godinot N., Bertrand L., Yang-Feng T. L., Fremeau R. T., Jr, Caron M. G. Cloning, molecular characterization, and chromosomal assignment of a gene encoding a second D1 dopamine receptor subtype: differential expression pattern in rat brain compared with the D1A receptor. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7491–7495. doi: 10.1073/pnas.88.17.7491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Valenzuela J. E., Defilippi C., Diaz G., Navia E., Merino Y. Effect of dopamine on human gastric and pancreatic secretion. Gastroenterology. 1979 Feb;76(2):323–326. [PubMed] [Google Scholar]
  36. Vaughan R. A. Photoaffinity-labeled ligand binding domains on dopamine transporters identified by peptide mapping. Mol Pharmacol. 1995 May;47(5):956–964. [PubMed] [Google Scholar]
  37. Young W. S., 3rd Simultaneous use of digoxigenin- and radiolabeled oligodeoxyribonucleotide probes for hybridization histochemistry. Neuropeptides. 1989 May-Jun;13(4):271–275. doi: 10.1016/0143-4179(89)90081-4. [DOI] [PubMed] [Google Scholar]
  38. Ziller C., Mirabel M. A., Vandenbunder B., Fauquet M. The tyrosine hydroxylase gene is expressed in endoderm and pancreas of early quail embryos. Anat Embryol (Berl) 1994 Apr;189(4):307–315. doi: 10.1007/BF00190587. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES