Abstract
Aggregated amyloid peptides (AP), major components of senile plaques, have been considered to play a very important and crucial role in the development and neuro-pathogenesis of Alzheimer’s disease (AD). In the present in vitro, study the synergistic effects of Pb2+, a heavy metal, and AP on the human neuroblastoma SH-SY5Y cells were investigated. The cells treated with Pb2+ (0.01–10 μM) alone exhibited a significant decrease in viability and IC50 was 5 μM. A similar decrease in viability was also observed when the cells were exposed to AP, Aβ1–40 (20–120 μM) and Aβ25-35 (2.5–15 μM) for 48 hrs. The IC50 values were 60 μM and 7.5 μM for Aβ1–40 and Aβ25–35 respectively. To assess the synergistic effects the cells were exposed to IC50 of both AP and Pb2+, which resulted in further reduction of the viability. The study was extended to determine the lactate dehydrogenase (LDH) release to assess the cytotoxic effects, 8-isoprostane for extent of oxidative damage, COX 1 and 2 for inflammation related changes, p53 protein for DNA damage and protein kinases A and C for signal transduction. The data suggest that the toxic effects of AP were most potent in the presence of Pb2+, resulting in an aggravated clinical pathological condition. This could be attributed to the oxidative stress, inflammation neuronal apoptosis and an alteration in the activities of the signaling enzymes.
Key words: Amyloid peptides, Lead, LDH, Oxidative stress, Inflammation, Neuronal apoptosis, Signaling
Full Text
The Full Text of this article is available as a PDF (498.3 KB).
Abbreviations used
- AD
Alzheimer’s disease
- Aβ
β-amyloid peptide
- AP
aggregated amyloid peptides
- APP
amyloid precursor protein
- COX
cyclooxygenase
- LDH
lactate dehydrogenase
- Pb2+
lead
- PK
protein kinase
- ROS
reactive oxygen species
References
- 1.Lesné S., Koh M.T., Kotilinek L., Kayed R., Glabe C.G., Yang A., Gallagher M., Ashe K.H. A specific amyloid-beta protein assembly in the brain impairs memory. Nature. 2006;440:352–357. doi: 10.1038/nature04533. [DOI] [PubMed] [Google Scholar]
- 2.Lee V.M., Goedert M., Trojanowski J.Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 2001;24:1121–1159. doi: 10.1146/annurev.neuro.24.1.1121. [DOI] [PubMed] [Google Scholar]
- 3.Selkoe D.J. Alzheimer’s disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J. Alzheimers Dis. 2001;3:75–80. doi: 10.3233/jad-2001-3111. [DOI] [PubMed] [Google Scholar]
- 4.Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–356. doi: 10.1126/science.1072994. [DOI] [PubMed] [Google Scholar]
- 5.Abramov A.Y., Canevari L., Duchen M.R. Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J. Neurosci. 2003;15:5088–5095. doi: 10.1523/JNEUROSCI.23-12-05088.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Crack P.J., Cimdins K., Ali U., Hertzog P.J., Iannello R.C. Lack of glutathione peroxidase-1 exacerbates abeta-mediated neurotoxicity in cortical neurons. J. Neural Transm. 2006;113:645–657. doi: 10.1007/s00702-005-0352-y. [DOI] [PubMed] [Google Scholar]
- 7.Fukui K., Takatsu H., Shinkai T., Suzuki S., Abe K., Urano S. Appearance of amyloid beta-like substances and delayed-type apoptosis in rat hippocampus CA1 region through aging and oxidative stress. J. Alzheimers Dis. 2005;8:299–309. doi: 10.3233/jad-2005-8309. [DOI] [PubMed] [Google Scholar]
- 8.Kadowaki H., Nishitoh H., Urano F., Sadamitsu C., Matsuzawa A., Takeda K., Masutani H., Yodoi J., Urano Y., Nagano T., Ichijo H. Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 2005;12:19–24. doi: 10.1038/sj.cdd.4401528. [DOI] [PubMed] [Google Scholar]
- 9.Selkoe D.J. Alzheimer’s disease: genotypes, phenotypes and treatments. Science. 1997;275:630–631. doi: 10.1126/science.275.5300.630. [DOI] [PubMed] [Google Scholar]
- 10.Cummings J.L., Vinters H.V., Cole G.M., Khachaturian Z.S. Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology. 1998;51:S2–S17. doi: 10.1212/WNL.51.1_Suppl_1.S2. [DOI] [PubMed] [Google Scholar]
- 11.Klein W.L., Kraft G.A., Finch C.E. Targeting small abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci. 2001;24:219–224. doi: 10.1016/S0166-2236(00)01749-5. [DOI] [PubMed] [Google Scholar]
- 12.Kelly B.L., Ferreira A. Beta-amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J. Biol. Chem. 2006;281:28079–28089. doi: 10.1074/jbc.M605081200. [DOI] [PubMed] [Google Scholar]
- 13.Shih T.M., Hamin N. Chronic lead exposure in mature animals: neurochemical correlates. Life Sci. 1978;21:877–888. doi: 10.1016/0024-3205(78)90212-6. [DOI] [PubMed] [Google Scholar]
- 14.Silbergeld E.K., Goldberg A. Hyperacidity: lead induced behavior disorder. Environ. Health Perspect. 1974;7:227–232. doi: 10.1289/ehp.747227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Nihei M.K., Guilarte T.R. Molecular mechanisms of low-level Pb2+ neurotoxicity. Handbook of Neurotoxicology. 2002;1:107–133. [Google Scholar]
- 16.Platt B. Experimental approaches to assess metallotoxicity and aging in models of Alzheimer’s disease. J. Alzheimers Dis. 2006;10:203–213. doi: 10.3233/jad-2006-102-307. [DOI] [PubMed] [Google Scholar]
- 17.Chellu S.C., Mohan C.V., Khamisi C., Challa S. Lead induced cell death of human neuroblastoma cells involves GSH deprivation. Cell. Mol. Biol. Lett. 2005;10:413–423. [PubMed] [Google Scholar]
- 18.Tang J., Xu H., Fan X., Li D., Rancourt D., Zhou G., Li Z., Yang L. Embryonic stem cell-derived neural precursor cells improve memory dysfunction in A-beta (1–40) injured rats. Neurosci. Res. 2008;62:86–96. doi: 10.1016/j.neures.2008.06.005. [DOI] [PubMed] [Google Scholar]
- 19.Zhang L., Xing D., Zhu D., Chen Q. Low-Power Laser irradiation inhibiting A-beta 25–35 induced PC12 cell apoptosis via PKC activation. Cell Physiol. Biochem. 2008;22:215–222. doi: 10.1159/000149799. [DOI] [PubMed] [Google Scholar]
- 20.Shimohama S. Apoptosis in Alzheimer’s disease: an update. Apoptosis. 2000;5:9–16. doi: 10.1023/A:1009625323388. [DOI] [PubMed] [Google Scholar]
- 21.Roth K.A. Caspases, apoptosis, and Alzheimer’s disease: causation, correlation, and confusion. J. Neuropathol. Exp. 2001;60:829–838. doi: 10.1093/jnen/60.9.829. [DOI] [PubMed] [Google Scholar]
- 22.Khalil N., Wilson J. W., Talbott E.O., Morrow L.A., Hochberg M.C., Hillier T.A., Muldoon S.B., Cummings S.R., Cauley J.A. Association of blood lead concentrations with mortality in older women: a pospective cohort study. Environ. Health. 2009;8:1–10. doi: 10.1186/1476-069X-8-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Yatin S.M., Varadarajan S., Link C.D., Butterfield D.A. In vitro, and in vivo, oxidative stress associated with Alzheimer’s amyloid beta-peptide (1–42) Neurobiol. Aging. 1999;20:325–330. doi: 10.1016/S0197-4580(99)00056-1. [DOI] [PubMed] [Google Scholar]
- 24.Cardoso S.M., Santos S., Swerdlow R.H., Oliveira C.R. Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB. 2001;15:1439–1441. doi: 10.1096/fj.00-0561fje. [DOI] [PubMed] [Google Scholar]
- 25.Lesne S., Koh M.T., Kotilinek L., Kayed R., Glabe C.G., Yang A., Gallagher M., Ashe K.H. A specific amyloid-beta protein assembly in the brain impairs memory. Nature. 2006;440:352–357. doi: 10.1038/nature04533. [DOI] [PubMed] [Google Scholar]
- 26.Sonnen J.A., Breitner J.C., Lovell M.A., Markesbery W.R., Quinn J.F., Montine T.J. Free radical-mediated damage to brain in Alzheimer’s disease and its transgenic mouse models. Free Radical Biol. Med. 2008;45:219–230. doi: 10.1016/j.freeradbiomed.2008.04.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Gilgun-Sherki Y., Melamed E., Offen D. Antioxidant treatment in Alzheimer’s disease: current state. J. Mol. Neurosci. 2003;21:1–11. doi: 10.1385/JMN:21:1:1. [DOI] [PubMed] [Google Scholar]
- 28.Morrow J.D., Hill K.E., Burk R.F., Nammour T.M., Badr K.F., Roberts L.J. A series of prostaglandin F2-like compounds are produced in vivo, in humans by a noncyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. U.S.A. 1990;87:9383–9387. doi: 10.1073/pnas.87.23.9383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Roberts L.J., Morrow J.D. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic. Biol. Med. 2000;28:505–513. doi: 10.1016/S0891-5849(99)00264-6. [DOI] [PubMed] [Google Scholar]
- 30.Basu S. F2-isoprostane induced prostaglandin formation in the rabbit. Free Radic. Res. 2006;40:273–277. doi: 10.1080/10715760500511492. [DOI] [PubMed] [Google Scholar]
- 31.Basu S. Isoprostanes: novel bioactive products of lipid peroxidation. Free Radic. Res. 2004;38:105–122. doi: 10.1080/10715760310001646895. [DOI] [PubMed] [Google Scholar]
- 32.Montuschi P., Barnes P.J., Roberts L.J. Isoprostanes: markers and mediators of oxidative stress. FASEB J. 2004;18:1791–1800. doi: 10.1096/fj.04-2330rev. [DOI] [PubMed] [Google Scholar]
- 33.Qin W., Ho L., Pompl P.N., Peng Y., Zhao Z., Xiang Z., Robakis N.K., Shioi J., Suh J., Pasinetti G.M. Cyclooxygenase COX-2 and COX-1 potentiate betaamyloid peptide generation through mechanisms that involve gamma-secretase activity. J. Biol. Chem. 2003;278:50970–50977. doi: 10.1074/jbc.M307699200. [DOI] [PubMed] [Google Scholar]
- 34.Xiang Z., Ho L., Yemul S., Zhao Z., Qing W., Pompl P., Kelley K., Dang A., Teplow D., Pasinetti G.M. Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimer’s disease neuropathology. Gene Expr. 2002;10:271–278. doi: 10.3727/000000002783992352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Alvarez S., Serramia M.J., Fresno M., Munoz Fernandez M. Human immunodeficiency virus type 1 envelope glycoprotein 120 induces cyclooxygenase-2 expression in neuroblastoma cells through a nuclear factor kappa B and activating protein1 mediated mechanism. J. Neurochem. 2005;94:850–861. doi: 10.1111/j.1471-4159.2005.03267.x. [DOI] [PubMed] [Google Scholar]
- 36.Alvarez S., Blanco A., Kern F., Fresno M., Munoz Fernandez M.A. HIV-2 induces NF-kappa B activation and cyclooxygenase-2 expression in human astroglial cells. Virology. 2008;380:144–151. doi: 10.1016/j.virol.2008.07.008. [DOI] [PubMed] [Google Scholar]
- 37.Tatton W.G., Olanow C.W. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochem. Biophys. Acta. 1999;1410:195–213. doi: 10.1016/S0005-2728(98)00167-4. [DOI] [PubMed] [Google Scholar]
- 38.Zhang Y., McLaughlin R., Goodyear C., LeBlanc A. Selective cytotoxicity of intracellular amyloid beta peptide 1–42 through p53 and Bax in cultured primary human neurons. J. Cell Biol. 2002;156:519–529. doi: 10.1083/jcb.200110119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Hecquet C., Lefevre G., Valtink M., Engelmann K., Mascarelli F. Cyclic AMP inhibits the proliferation of retinal pigmented epithelial cells through the inhibition of ERK1/2 in a PKA-independent manner. Oncogene. 2002;21:6101–6112. doi: 10.1038/sj.onc.1205765. [DOI] [PubMed] [Google Scholar]
- 40.Nishihara H., Kizaka-Kondoh S., Insel P.A., Eckmann L. Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cyclic AMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc. Natl. Acad. Sci. U.S.A. 2003;100:8921–8926. doi: 10.1073/pnas.1533221100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Cardell M., Wieloch T. Time course of the translocation and inhibition of protein kinase C during complete cerebral ischemia in the rat. J. Neurochem. 1993;61:1308–1314. doi: 10.1111/j.1471-4159.1993.tb13623.x. [DOI] [PubMed] [Google Scholar]
- 42.Busto R., Globus M.Y., Neary J.T., Ginsberg M.D. Regional alterations of protein kinase C activity following transient cerebral ischemia: effects of intra-ischemic brain temperature modulation. J. Neurochem. 1994;63:1095–1103. doi: 10.1046/j.1471-4159.1994.63031095.x. [DOI] [PubMed] [Google Scholar]
- 43.Liang Z., Liu F., Grundke-Iqbal I., Iqbal K., Gong C.X. Downregulation of cAMP-dependent protein Kinase by over-activated calpain in Alzheimer diseased brain. J. Neurochem. 2007;103:2462–2470. doi: 10.1111/j.1471-4159.2007.04942.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Gong B., Cao Z., Zheng P., Vitolo O.V., Liu S. Ubiquitin hydrolase uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell. 2006;126:775–788. doi: 10.1016/j.cell.2006.06.046. [DOI] [PubMed] [Google Scholar]
- 45.Wang P., Chen L.L., Yan H., Li J.C. Trichosanthin suppresses HeLa cell proliferation through inhibition of the PKC/MAPK signaling pathway. Cell Biol. Toxicol. 2009;25:479–488. doi: 10.1007/s10565-008-9102-x. [DOI] [PubMed] [Google Scholar]
- 46.Iijima-Ando K., Hearn S.A., Shenton C., Gatt A., Zhao L., Iijima K. Mitochondrial mis-localization underlies Aβ-42 induced neuronal dysfunction in a drosophila model of Alzheimer’s disease. PLoS One. 2009;4:1–13. doi: 10.1371/journal.pone.0008310. [DOI] [PMC free article] [PubMed] [Google Scholar]
