Abstract
The adaptations in the freshwater turtle that permit survival despite prolonged loss of mitochondrial ATP generation were investigated by comparing the bioenergetics of turtle brain slices with rat brain slices. Aerobic turtle brain shows no significant difference in basal levels of total ATP generation compared to rat brain; levels in turtle brain and rat brain were 18.4 +/- 2.8 (SD) and 19.4 +/- 2.2 mumol (100 mg of tissue)-1 hr-1, respectively. However, in turtle brain, a significantly greater fraction of ATP is derived from glycolysis both under aerobic and anaerobic conditions [aerobic turtle (24%) and rat (13%), P less than 0.02; anaerobic, turtle (28%) and rat (18%), P less than 0.05]. The increased glycolytic capacity is related to high levels of rate-limiting glycolytic enzymes, such as pyruvate kinase (EC 2.7.1.40). Turtle brain operates close to glycolytic capacity even under aerobic conditions, and no Pasteur effect can be demonstrated. Quantitatively, anaerobic glycolysis accounts for a maximum of 28% of basal aerobic ATP generation, suggesting that prolonged diving is also accompanied by a reduction in brain energy requirements. The adaptation subserving short-term (natural) diving is an increase in brain glycolytic capacity. The adaptation subserving prolonged diving (days to weeks) may be a reduction in the energy requirements of brain (and other cells).
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Belkin D. A. Aquatic respiration and underwater survival of two freshwater turtle species. Respir Physiol. 1968 Jan;4(1):1–14. doi: 10.1016/0034-5687(68)90002-9. [DOI] [PubMed] [Google Scholar]
- Bing O. H., Brooks W. W., Inamdar A. N., Messer J. V. Tolerance of isolated heart muscle to hypoxia: turtle vs. rat. Am J Physiol. 1972 Dec;223(6):1481–1485. doi: 10.1152/ajplegacy.1972.223.6.1481. [DOI] [PubMed] [Google Scholar]
- Black P. M. Brain death (first of two parts). N Engl J Med. 1978 Aug 17;299(7):338–344. doi: 10.1056/NEJM197808172990705. [DOI] [PubMed] [Google Scholar]
- Carroll J. J., Smith N., Babson A. L. A colorimetric serum glucose determination using hexokinase and glucose-6-phosphate dehydrogenase. Biochem Med. 1970 Sep;4(2):171–180. doi: 10.1016/0006-2944(70)90093-1. [DOI] [PubMed] [Google Scholar]
- Jackson D. C., Silverblatt H. Respiration and acid-base status of turtles following experimental dives. Am J Physiol. 1974 Apr;226(4):903–909. doi: 10.1152/ajplegacy.1974.226.4.903. [DOI] [PubMed] [Google Scholar]
- Lincoln D. R., Black J. A., Rittenberg M. B. The immunological properties of pyruvate kinase. II. The relationship of the human erythrocyte isozyme to the human liver isozymes. Biochim Biophys Acta. 1975 Dec 18;410(2):279–284. doi: 10.1016/0005-2744(75)90230-2. [DOI] [PubMed] [Google Scholar]
- McDougal D. B., Jr, Holowach J., Howe M. C., Jones E. M., Thomas C. A. The effects of anoxia upon energy sources and selected metabolic intermediates in the brains of fish, frog and turtle. J Neurochem. 1968 Jul;15(7):577–588. doi: 10.1111/j.1471-4159.1968.tb08956.x. [DOI] [PubMed] [Google Scholar]
- Penney D. G., Shemerdiak W. P. Behavior of phosphofructokinase during the aerobic-anaerobic transition period in the isolated perfused turtle (Pseudemys scripta elegans) heart. Comp Biochem Physiol B. 1973 May 15;45(1):177–187. doi: 10.1016/0305-0491(73)90298-8. [DOI] [PubMed] [Google Scholar]
- ROBIN E. D., VESTER J. W., MURDAUGH H. V., Jr, MILLEN J. E. PROLONGED ANAEROBIOSIS IN A VERTEBRATE: ANAEROBIC METABOLISM IN THE FRESHWATER TURTLE. J Cell Physiol. 1964 Jun;63:287–297. doi: 10.1002/jcp.1030630304. [DOI] [PubMed] [Google Scholar]
- Robin E. D., Smith J. D., Tanser A. R., Adamson J. S., Millen J. E., Packer B. Ion and macromolecular transport in the alveolar macrophage. Biochim Biophys Acta. 1971 Jul 6;241(1):117–128. doi: 10.1016/0005-2736(71)90310-5. [DOI] [PubMed] [Google Scholar]
- Simon L. M., Liu J., Theodore J., Robin E. D. Some comparative aspects of the organ distribution of superoxide dismutase activity in the freshwater turtle, Pseudemys scripta elegans. Comp Biochem Physiol B. 1977;58(4):377–379. doi: 10.1016/0305-0491(77)90184-5. [DOI] [PubMed] [Google Scholar]
- Simon L. M., Robin E. D., Raffin T., Theodore J., Douglas W. H. Bioenergetic pattern of isolated type II pneumocytes in air and during hypoxia. J Clin Invest. 1978 May;61(5):1232–1239. doi: 10.1172/JCI109039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storey K. B., Hochachka P. W. Enzymes of energy metabolism from a vertebrate facultative anaerobe, Pseudemys scripta. Turtle heart phosphofructokinase. J Biol Chem. 1974 Mar 10;249(5):1417–1422. [PubMed] [Google Scholar]
- Susor W. A., Rutter W. J. Method for the detection of pyruvate kinase, aldolase, and other pyridine nucleotide linked enzyme activities after electrophoresis. Anal Biochem. 1971 Sep;43(1):147–155. doi: 10.1016/0003-2697(71)90119-9. [DOI] [PubMed] [Google Scholar]
