Abstract
At 5 min after quiescent cells are induced to enter G1 there is a large increase in the amount of 32P incorporated into 40S ribosomal protein S6. Here we show that changes in the specific activities of 32Pi and [gamma-32P]ATP in stimulated as compared to quiescent cultures do not account for this large increase. Instead, we demonstrate by decreased electrophoretic mobility on two-dimensional polyacrylamide gels that this increase is due to a quantitative increase in the total amount of phosphate incorporated into S6. Furthermore, pulse-chase experiments show that the phosphate that is incorporated into S6 is metabolically stable during at least the first 60 min of induction and that the incorporation of 32P into S6 responds immediately to the replacement of 32Pi by Pi in the medium, in contrast to [gamma-32P]ATP which changes very slowly. Thus, the S6 phosphate donor must be a compartment separate from that of the total cellular ATP.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aledort L. M., Weed R. I., Troup S. B. Ionic effects on firefly bioluminescence assay of red blood cell ATP. Anal Biochem. 1966 Nov;17(2):268–277. doi: 10.1016/0003-2697(66)90205-3. [DOI] [PubMed] [Google Scholar]
- Anderson W. F., Bosch L., Cohn W. E., Lodish H., Merrick W. C., Weissbach H., Wittmann H. G., Wool I. G. International symposium on protein synthesis. Summary of Fogarty Center-NIH Workshop held in Bethesda, Maryland on 18-20 October, 1976. FEBS Lett. 1977 Apr 1;76(1):1–10. doi: 10.1016/0014-5793(77)80109-9. [DOI] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Breenberg D. B., Barsh G. S., Ho T. S., Cunningham D. D. Serum-stimulated phosphate uptake and initiation of fibroblast proliferation. J Cell Physiol. 1977 Feb;90(2):193–210. doi: 10.1002/jcp.1040900206. [DOI] [PubMed] [Google Scholar]
- Cunningham D. D., Pardee A. B. Transport changes rapidly initiated by serum addition to "contact inhibited" 3T3 cells. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1049–1056. doi: 10.1073/pnas.64.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon J. Hydrolysis of guanosine 5'-triphosphate associated wh binding of aminoacyl transfer ribonucleic acid to ribosomes. J Biol Chem. 1969 Oct 25;244(20):5680–5686. [PubMed] [Google Scholar]
- Greengard P. Phosphorylated proteins as physiological effectors. Science. 1978 Jan 13;199(4325):146–152. doi: 10.1126/science.22932. [DOI] [PubMed] [Google Scholar]
- Gressner A. M., Wool I. G. The phosphorylation of liver ribosomal proteins in vivo. Evidence that only a single small subunit protein (S6) is phosphorylated. J Biol Chem. 1974 Nov 10;249(21):6917–6925. [PubMed] [Google Scholar]
- Grummt F., Paul D., Grummt I. Regulation of ATP pools, rRNA and DNA synthesis in 3T3 cells in response to serum or hypoxanthine. Eur J Biochem. 1977 Jun 1;76(1):7–12. doi: 10.1111/j.1432-1033.1977.tb11564.x. [DOI] [PubMed] [Google Scholar]
- Grummt I., Grummt F. Control of nucleolar RNA synthesis by the intracellular pool sizes of ATP and GTP. Cell. 1976 Mar;7(3):447–453. doi: 10.1016/0092-8674(76)90175-6. [DOI] [PubMed] [Google Scholar]
- Hamilton M. G., Pavlovec A., Petermann M. L. Molecular weight, buoyant density, and composition of active subunits of rat liver ribosomes. Biochemistry. 1971 Aug 31;10(18):3424–3427. doi: 10.1021/bi00794a017. [DOI] [PubMed] [Google Scholar]
- Haselbacher G. K., Humbel R. E., Thomas G. Insulin-like growth factor: insulin or serum increase phosphorylation of ribosomal protein S6 during transition of stationary chick embryo fibroblasts into early G1 phase of the cell cycle. FEBS Lett. 1979 Apr 1;100(1):185–190. doi: 10.1016/0014-5793(79)81160-6. [DOI] [PubMed] [Google Scholar]
- Hershko A., Mamont P., Shields R., Tomkins G. M. "Pleiotypic response". Nat New Biol. 1971 Aug;232(33):206–211. [PubMed] [Google Scholar]
- Howard G. A., Traugh J. A., Croser E. A., Traut R. R. Ribosomal proteins from rabbit reticulocytes: number and molecular weights of proteins from ribosomal subunits. J Mol Biol. 1975 Apr 15;93(3):391–404. doi: 10.1016/0022-2836(75)90285-5. [DOI] [PubMed] [Google Scholar]
- Jimenez de Asua L., Rozengurt E. Multiple control mechanisms underlie initiation of growth in animal cells. Nature. 1974 Oct 18;251(5476):624–626. doi: 10.1038/251624a0. [DOI] [PubMed] [Google Scholar]
- Kabat D. Turnover of phosphoryl groups in reticulocyte ribosomal phosphoproteins. J Biol Chem. 1972 Sep 10;247(17):5338–5344. [PubMed] [Google Scholar]
- Lastick S. M., Nielsen P. J., McConkey E. H. Phosphorylation of ribosomal protein S6 in suspension cultured HeLa cells. Mol Gen Genet. 1977 Apr 29;152(3):223–230. doi: 10.1007/BF00693074. [DOI] [PubMed] [Google Scholar]
- Leader D. P., Rankine A. D., Coia A. A. The phosphorylation of ribosomal protein S6 in baby hamster kidney fibroblasts. Biochem Biophys Res Commun. 1976 Aug 23;71(4):966–974. doi: 10.1016/0006-291x(76)90749-x. [DOI] [PubMed] [Google Scholar]
- Lodish H. F. Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature. 1974 Oct 4;251(5474):385–388. doi: 10.1038/251385a0. [DOI] [PubMed] [Google Scholar]
- Lodish H. F. Translational control of protein synthesis. Annu Rev Biochem. 1976;45:39–72. doi: 10.1146/annurev.bi.45.070176.000351. [DOI] [PubMed] [Google Scholar]
- Miller Z., Lovelace E., Gallo M., Pastan I. Cyclic guanosine monophosphate and cellular growth. Science. 1975 Dec 19;190(4220):1213–1215. doi: 10.1126/science.173021. [DOI] [PubMed] [Google Scholar]
- Moens W., Vokaer A., Kram R. Cyclic AMP and cyclic GMP concentrations in serum- and density-restricted fibroblast cultures. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1063–1067. doi: 10.1073/pnas.72.3.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noll M., Burger M. M. Membrane-bound and free polysomes in transformed and untransformed fibroblast cells. J Mol Biol. 1974 Dec 5;90(2):215–236. doi: 10.1016/0022-2836(74)90369-6. [DOI] [PubMed] [Google Scholar]
- Prescott D. M. The cell cycle and the control of cellular reproduction. Adv Genet. 1976;18:99–177. doi: 10.1016/s0065-2660(08)60438-1. [DOI] [PubMed] [Google Scholar]
- Rapaport E., Zamecnik P. C. Incorporation of adenosine into ATP: formation of compartmentalized ATP. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3122–3125. doi: 10.1073/pnas.73.9.3122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudland P. S. Control of translation in cultured cells: continued synthesis and accumulation of messenger RNA in nondividing cultures. Proc Natl Acad Sci U S A. 1974 Mar;71(3):750–754. doi: 10.1073/pnas.71.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudland P. S., Weil S., Hunter A. R. Changes in RNA metabolism and accumulation of presumptive messenger RNA during transition from the growing to the quiescent state of cultured mouse fibroblasts. J Mol Biol. 1975 Aug 25;96(4):745–766. doi: 10.1016/0022-2836(75)90150-3. [DOI] [PubMed] [Google Scholar]
- Seifert W., Rudland P. S. Cyclic nucleotides and growth control in cultured mouse cells: correlation of changes in intracellular 3':5' cGMP concentration with a specific phase of the cell cycle. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4920–4924. doi: 10.1073/pnas.71.12.4920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soboll S., Scholz R., Heldt H. W. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver. Eur J Biochem. 1978 Jun 15;87(2):377–390. doi: 10.1111/j.1432-1033.1978.tb12387.x. [DOI] [PubMed] [Google Scholar]
- Thomas G., Siegmann M., Bowman P. D., Gordon J. The isolation and analysis of polysomes and ribosomal RNA from cells growing in monolayer culture. Exp Cell Res. 1977 Sep;108(2):253–258. doi: 10.1016/s0014-4827(77)80032-3. [DOI] [PubMed] [Google Scholar]
- Thomas G., Sweeney R., Chang C., Noller H. F. Identification of proteins functionally altered by chemical modification of the transfer RNA and polyuridylic acid binding sites of 30 S ribosomal subunits. J Mol Biol. 1975 Jun 15;95(1):91–102. doi: 10.1016/0022-2836(75)90338-1. [DOI] [PubMed] [Google Scholar]
- Tomkins G. M. The metabolic code. Science. 1975 Sep 5;189(4205):760–763. doi: 10.1126/science.169570. [DOI] [PubMed] [Google Scholar]
- Ward S., Wilson D. L., Gilliam J. J. Methods for fractionation and scintillation counting of radioisotope-labeled polyacrylamide gels. Anal Biochem. 1970 Nov;38(1):90–97. doi: 10.1016/0003-2697(70)90158-2. [DOI] [PubMed] [Google Scholar]
- Weber M. J., Edlin G. Phosphate transport, nucleotide pools, and ribonucleic acid synthesis in growing and in density-inhibited 3T3 cells. J Biol Chem. 1971 Mar 25;246(6):1828–1833. [PubMed] [Google Scholar]
- Williams J. G., Penman S. The messenger RNA sequences in growing and resting mouse fibroblasts. Cell. 1975 Oct;6(2):197–206. doi: 10.1016/0092-8674(75)90010-0. [DOI] [PubMed] [Google Scholar]
- Zeilig C. E., Goldberg N. D. Cell-cycle-related changes of 3':5'-cyclic GMP levels in Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1052–1056. doi: 10.1073/pnas.74.3.1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Asua L. J., O'Farrell M. K., Clingan D., Rudland P. S. Temporal sequence of hormonal interactions during the prereplicative phase of quiescent cultured 3T3 fibroblasts. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3845–3849. doi: 10.1073/pnas.74.9.3845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Asua L. J., Rozengurt E., Dulbecco R. Kinetics of early changes in phosphate and uridine transport and cyclic AMP levels stimulated by serum in density-inhibited 3T3 cells. Proc Natl Acad Sci U S A. 1974 Jan;71(1):96–98. doi: 10.1073/pnas.71.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]