Abstract
Our previous finding that increasing myocardial contractility caused reflex systemic hypotension, the left ventricular (LV) mechanoreceptor reflex, suggested that the classical Bezold reflex (systemic hypotension and bradycardia after intracoronary administration of veratrum alkaloids) may be initiated by these same LV mechanoreceptors. In our working LV preparation with the coronary and systemic circulations isolated and perfused separately, intracoronary injection of veratrum alkaloids, like that of catecholamines or ouabain, had a positive inotropic effect which produced the hypotensive response typical of the LV mechanoreceptor reflex. To test directly if veratridine's positive inotropic effect initiates the Bezold reflex, verapamil, which blocks the slow Ca2+ channels of myocardial cells but leaves intracardiac nerves unaffected, was injected by the intracoronary route to prevent the increased contractility from intracoronary injection of veratridine which also abolished the reflex hypotension, demonstrating conclusively that increasing myocardial contractility and thereby activating LV mechanoreceptors but not chemoreceptors initiates the Bezold reflex. Contrariwise, decreasing contractility or cardiac asystole by administration of tetrodotoxin, verapamil, or EDTA resulted in an increase in the systemic resistance, indicating that changes in the magnitude of the stimulus initiating the LV mechanoreceptor reflex (i.e., changes in myocardial contractility) lead to directionally opposite changes in peripheral resistance, as in the sino-aortic mechanoreflexes. Thus, it is concluded that the Bezold reflex is a special case of the LV mechanoreceptor reflex. The latter, by means of feedback mechanisms, functions normally by continuously matching the peripheral resistance to the LV contractile state so as to maintain the arterial pressure constant, thereby playing an important role in blood pressure regulation.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALTAMIRANO-ORREGO R., LOEWENSTEIN W. R. Enhancement of activity in a Pacinian corpuscle by sympathomimetic agents. Nature. 1956 Dec 8;178(4545):1292–1293. doi: 10.1038/1781292a0. [DOI] [PubMed] [Google Scholar]
- ANTONI H., ENGSTFELD G., FLECKENSTEIN A. [Inotropic effect of ATP and adrenalin on the hypodynamic frog myocardium after electro-mechanical decoupling by calcium ion withdrawal]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;272:91–106. [PubMed] [Google Scholar]
- Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker P. F., Blaustein M. P., Keynes R. D., Manil J., Shaw T. I., Steinhardt R. A. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J Physiol. 1969 Feb;200(2):459–496. doi: 10.1113/jphysiol.1969.sp008703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P. Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro. J Physiol. 1975 Jun;247(3):617–655. doi: 10.1113/jphysiol.1975.sp010950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P., Hodgkin A. L. The effect of cyanide on the efflux of calcium from squid axons. J Physiol. 1969 Feb;200(2):497–527. doi: 10.1113/jphysiol.1969.sp008704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P., Johnson E. M., Jr, Needleman P. Calcium-dependent norepinephrine release from presynaptic nerve endings in vitro. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2237–2240. doi: 10.1073/pnas.69.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHERNETSKI K. E. SYMPATHETIC ENHANCEMENT OF PERIPHERAL SENSORY INPUT IN THE FROG. J Neurophysiol. 1964 May;27:493–515. doi: 10.1152/jn.1964.27.3.493. [DOI] [PubMed] [Google Scholar]
- COMROE J. H., Jr, VAN LINGEN B., STROUD R. C., RONCORONI A. Reflex and direct cardiopulmonary effects of 5-OH-tryptamine (serotonin); their possible role in pulmonary embolism and coronary thrombosis. Am J Physiol. 1953 Jun;173(3):379–386. doi: 10.1152/ajplegacy.1953.173.3.379. [DOI] [PubMed] [Google Scholar]
- Catton W. T. Mechanoreceptor function. Physiol Rev. 1970 Jul;50(3):297–318. doi: 10.1152/physrev.1970.50.3.297. [DOI] [PubMed] [Google Scholar]
- Chevalier P. A., Weber K. C., Lyons G. W., Nicoloff D. M., Fox I. J. Hemodynamic changes from stimulation of left ventricular baroreceptors. Am J Physiol. 1974 Sep;227(3):719–728. doi: 10.1152/ajplegacy.1974.227.3.719. [DOI] [PubMed] [Google Scholar]
- DAWES G. S., COMROE J. H., Jr Chemoreflexes from the heart and lungs. Physiol Rev. 1954 Apr;34(2):167–201. doi: 10.1152/physrev.1954.34.2.167. [DOI] [PubMed] [Google Scholar]
- Dawes G. S., Feldberg W. The causes of serum bradycardia. J Physiol. 1949 May 15;108(3):362–364. [PMC free article] [PubMed] [Google Scholar]
- Fox I. J., Gerasch D. A., Leonard J. J. Left ventricular mechanoreceptors: a haemodynamic study. J Physiol. 1977 Dec;273(2):405–425. doi: 10.1113/jphysiol.1977.sp012101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman D. E. The transducer action of mechanoreceptor membranes. Cold Spring Harb Symp Quant Biol. 1965;30:59–68. doi: 10.1101/sqb.1965.030.01.009. [DOI] [PubMed] [Google Scholar]
- Haeusler G. Differential effect of verapamil on excitation-contraction coupling in smooth muscle and on excitation-secretion coupling in adrenergic nerve terminals. J Pharmacol Exp Ther. 1972 Mar;180(3):672–682. [PubMed] [Google Scholar]
- Hille B. Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol. 1968 Feb;51(2):199–219. doi: 10.1085/jgp.51.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iversen L. L. Catecholamine uptake processes. Br Med Bull. 1973 May;29(2):130–135. doi: 10.1093/oxfordjournals.bmb.a070982. [DOI] [PubMed] [Google Scholar]
- KOLATAT T., KRAMER K., MUHL N. Uber die Aktivität sensibler Herznerven des Frosches und ihre Beziehungen zur Herzdynamik. Pflugers Arch. 1957;264(2):127–144. doi: 10.1007/BF00363402. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. Further study of the role of calcium in synaptic transmission. J Physiol. 1970 May;207(3):789–801. doi: 10.1113/jphysiol.1970.sp009095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOEWENSTEIN W. R. Modulation of cutaneous mechanoreceptors by sympathetic stimulation. J Physiol. 1956 Apr 27;132(1):40–60. doi: 10.1113/jphysiol.1956.sp005501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loewenstein W. R., Skalak R. Mechanical transmission in a Pacinian corpuscle. An analysis and a theory. J Physiol. 1966 Jan;182(2):346–378. doi: 10.1113/jphysiol.1966.sp007827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
- Ota M., Narahashi T., Keeler R. F. Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons. J Pharmacol Exp Ther. 1973 Jan;184(1):143–154. [PubMed] [Google Scholar]
- Ransom F. Calcium and the action of certain drugs upon the frog's heart. J Physiol. 1917 Jul 3;51(3):176–181. doi: 10.1113/jphysiol.1917.sp001794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SALISBURY P. F., CROSS C. E. RIEBEN PA: Reflex effects of ventricular distention. Circ Res. 1960 May;8:530–534. doi: 10.1161/01.res.8.3.530. [DOI] [PubMed] [Google Scholar]
- Sperelakis N., Pappano A. J. Increase in PNa and PK of cultured heart cells produced by veratridine. J Gen Physiol. 1969 Jan;53(1):97–114. doi: 10.1085/jgp.53.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]