Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Aug;76(8):4151–4155. doi: 10.1073/pnas.76.8.4151

Toad urinary bladder epithelial cells in culture: maintenance of epithelial structure, sodium transport, and response to hormones.

J S Handler, R E Steele, M K Sahib, J B Wade, A S Preston, N L Lawson, J P Johnson
PMCID: PMC383996  PMID: 226998

Abstract

Epithelial cells from the toad urinary bladder have been grown in continuous culture. Many of the cells resemble the granular cell type of the urinary bladder. They form an epithelium with typical tight junctions and gap junctions. The transport properties of two cell lines have been examined. When cells of the line designated TB-M or of line TB-6c are grown on collagen-coated nucleopore filters, epithelia are formed that have transepithelial potential differences of 40 and 20 mV, resistances of 5000 and 10,000 omega-cm2, and short-circuit currents (ISC) of 8.5 and 2.5 muA/cm2, respectively. Net mucosa to serosa sodium transport accounts for all of ISC in line TB-M and for 70% of ISC in line TB-6c. Vasopressin, which stimulates adenylate cylase and ISC in the intact bladder, has no effect on the cells in culture. Cyclic AMP stimulates ISC and lowers resistance in both lines. Aldosterone stimulates ISC in both lines. This is accompanied by a fall in resistance in line TB-M and no change in resistance in line TB-6c. Amiloride inhibits ISC in TB-M cells under basal conditions and after stimulation by aldosterone. In line TB-6c amiloride has no effect under basal conditions but lowers ISC of aldosterone-treated cells to the basal level. Thus, the cells have retained the ability to form oriented, high-resistance epithelial membranes that manifest hormone-sensitive transepithelial sodium transport.

Full text

PDF
4151

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley P. J. Amiloride: a potent inhibitor of sodium transport across the toad bladder. J Physiol. 1968 Mar;195(2):317–330. doi: 10.1113/jphysiol.1968.sp008460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bisbee C. A., Machen T. E., Bern H. A. Mouse mammary epithelial cells on floating collagen gels: transepithelial ion transport and effects of prolactin. Proc Natl Acad Sci U S A. 1979 Jan;76(1):536–540. doi: 10.1073/pnas.76.1.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHOI J. K. The fine structure of the urinary bladder of the toad, Bufo marinus. J Cell Biol. 1963 Jan;16:53–72. doi: 10.1083/jcb.16.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978 Jun;77(3):853–880. doi: 10.1083/jcb.77.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Civan M. M., Hoffman R. E. Effect of aldosterone on electrical resistance of toad bladder. Am J Physiol. 1971 Feb;220(2):324–328. doi: 10.1152/ajplegacy.1971.220.2.324. [DOI] [PubMed] [Google Scholar]
  6. Coon H. G., Weiss M. C. A quantitative comparison of formation of spontaneous and virus-produced viable hybrids. Proc Natl Acad Sci U S A. 1969 Mar;62(3):852–859. doi: 10.1073/pnas.62.3.852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cuthbert A. W., Shum W. K. Effects of vasopressin and aldosterone on amiloride binding in toad bladder epithelial cells. Proc R Soc Lond B Biol Sci. 1975 Jun 17;189(1097):543–575. doi: 10.1098/rspb.1975.0072. [DOI] [PubMed] [Google Scholar]
  8. EDELMAN I. S., BOGOROCH R., PORTER G. A. ON THE MECHANISM OF ACTION OF ALDOSTERONE ON SODIUM TRANSPORT: THE ROLE OF PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1963 Dec;50:1169–1177. doi: 10.1073/pnas.50.6.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Finn A. L. Changing concepts of transepithelial sodium transport. Physiol Rev. 1976 Apr;56(2):453–464. doi: 10.1152/physrev.1976.56.2.453. [DOI] [PubMed] [Google Scholar]
  10. Goldring S. R., Dayer J. M., Ausiello D. A., Krane S. M. A cell strain cultured from porcine kidney increases cyclic AMP content upon exposure to calcitonin or vasopressin. Biochem Biophys Res Commun. 1978 Jul 28;83(2):434–440. doi: 10.1016/0006-291x(78)91009-4. [DOI] [PubMed] [Google Scholar]
  11. Handler J. S., Butcher R. W., Sutherland E. W., Orloff J. The effect of vasopressin and of theophylline on the concentration of adenosine 3',5'-phosphate in the urinary bladder of the toad. J Biol Chem. 1965 Nov;240(11):4524–4526. [PubMed] [Google Scholar]
  12. Handler J. S., Preston A. S., Orloff J. Effect of adrenal steroid hormones on the response of the toad's urinary bladder to vasopressin. J Clin Invest. 1969 May;48(5):823–833. doi: 10.1172/JCI106040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hays R. M. Antidiuretic hormone and water transfer. Kidney Int. 1976 Feb;9(2):223–230. doi: 10.1038/ki.1976.23. [DOI] [PubMed] [Google Scholar]
  14. Hull R. N., Cherry W. R., Weaver G. W. The origin and characteristics of a pig kidney cell strain, LLC-PK. In Vitro. 1976 Oct;12(10):670–677. doi: 10.1007/BF02797469. [DOI] [PubMed] [Google Scholar]
  15. LEAF A., ANDERSON J., PAGE L. B. Active sodium transport by the isolated toad bladder. J Gen Physiol. 1958 Mar 20;41(4):657–668. doi: 10.1085/jgp.41.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leighton J., Brada Z., Estes L. W., Justh G. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney. Science. 1969 Jan 31;163(3866):472–473. doi: 10.1126/science.163.3866.472. [DOI] [PubMed] [Google Scholar]
  17. McGrath C. M. Replication of mammary tumor virus in tumor cell cultures: dependence on hormone-induced cellular organization. J Natl Cancer Inst. 1971 Aug;47(2):455–467. [PubMed] [Google Scholar]
  18. Mendoza S. A., Handler J. S., Orloff J. Effect of inhibitors of sodium transport on response of toad bladder to ADH and cyclic AMP. Am J Physiol. 1970 Nov;219(5):1440–1445. doi: 10.1152/ajplegacy.1970.219.5.1440. [DOI] [PubMed] [Google Scholar]
  19. Misfeldt D. S., Hamamoto S. T., Pitelka D. R. Transepithelial transport in cell culture. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1212–1216. doi: 10.1073/pnas.73.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. ORLOFF J., HANDLER J. S. The similarity of effects of vasopressin, adenosine-3',5'-phosphate (cyclic AMP) and theophylline on the toad bladder. J Clin Invest. 1962 Apr;41:702–709. doi: 10.1172/JCI104528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rabito C. A., Tchao R., Valentich J., Leighton J. Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney. J Membr Biol. 1978 Nov 8;43(4):351–365. doi: 10.1007/BF01871696. [DOI] [PubMed] [Google Scholar]
  22. Sapirstein V. S., Scott W. N. Cyclic AMP and sodium transport. Quantitative and temporal relationships in toad urinary bladder. J Clin Invest. 1973 Sep;52(9):2379–2382. doi: 10.1172/JCI107426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Simmons N. L. Hormone stimulation of net transepithelial Na transport in cell culture [proceedings]. J Physiol. 1978 Mar;276:28P–29P. [PubMed] [Google Scholar]
  24. Wade J. B., Karnovsky M. J. The structure of the zonula occludens. A single fibril model based on freeze-fracture. J Cell Biol. 1974 Jan;60(1):168–180. doi: 10.1083/jcb.60.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wade J. B. Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique. III. Location, structure and vasopressin dependence of intramembrane particle arrays. J Membr Biol. 1978;40(Spec No):281–296. doi: 10.1007/BF02026011. [DOI] [PubMed] [Google Scholar]
  26. Walser M. Components of sodium and chloride flux across toad bladder. Biophys J. 1972 Apr;12(4):351–368. doi: 10.1016/S0006-3495(72)86089-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES