Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jul;80(14):4213–4217. doi: 10.1073/pnas.80.14.4213

Testing an alternative model for the ribosomal peptide elongation cycle.

H J Rheinberger, K H Nierhaus
PMCID: PMC384007  PMID: 6348767

Abstract

A kinetic analysis of poly(U)-dependent poly(Phe) synthesis with [14C]tRNAPhe and [3H]phenylalanine demonstrated that, in the course of efficient poly(Phe) synthesis, two tRNAs are present per 70S ribosome at all times, although at least 70% of the poly(Phe)-tRNAPhe is found at the peptidyl-tRNA (P) site. Together with our recent observation of a third tRNA-binding site on Escherichia coli ribosomes, these findings suggest a model for the peptide elongation cycle in which two tRNA molecules are present on the ribosome at both the pre- and the post-translocational state. This model predicts that deacylated tRNA is not released from the P site but translocated to the exit (E) site before release occurs. A series of translocation experiments with deacylated [14C]tRNAPhe at the P site and oligo [( 3H]Phe)-tRNA at the aminoacyl-tRNA (A) site proved that efficient elongation factor G-dependent translocation is not accompanied by a corresponding [14C]tRNAPhe release. However, significant [14C]tRNAPhe release was observed after translocation when an aminoacyl-tRNA was bound to the A site. Thus, deacylated tRNA is not released from the P site but is translocated to the E site, which therefore must be located "upstream" adjacent to the P site. Furthermore, the trigger for the release of deacylated tRNA from the E site is the binding of aminoacyl-tRNA to the A site.

Full text

PDF
4213

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belitsina N. V., Glukhova M. A., Spirin A. S. Elongation factor G-promoted translocation and polypeptide elongation in ribosomes without GTP cleavage: use of columns with matrix-bound polyuridylic acid. Methods Enzymol. 1979;60:761–779. doi: 10.1016/s0076-6879(79)60070-8. [DOI] [PubMed] [Google Scholar]
  2. De Groot N., Panet A., Lapidot Y. The binding of purified Phe-tRNA and peptidyl-tRNA Phe to Escherichia coli ribosomes. Eur J Biochem. 1971 Dec 10;23(3):523–527. doi: 10.1111/j.1432-1033.1971.tb01649.x. [DOI] [PubMed] [Google Scholar]
  3. Grajevskaja R. A., Ivanov Y. V., Saminsky E. M. 70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding. Eur J Biochem. 1982 Nov;128(1):47–52. doi: 10.1111/j.1432-1033.1982.tb06929.x. [DOI] [PubMed] [Google Scholar]
  4. Holschuh K., Bonin J., Gassen H. G. Mechanism of translocation: effect of cognate transfer ribonucleic acids on the binding of AUGUn to 70S ribosomes. Biochemistry. 1980 Dec 9;19(25):5857–5864. doi: 10.1021/bi00566a030. [DOI] [PubMed] [Google Scholar]
  5. Holschuh K., Gassen H. G. Mechanism of translocation. Binding equilibria between the ribosome, mRNA analogues, and cognate tRNAs. J Biol Chem. 1982 Feb 25;257(4):1987–1992. [PubMed] [Google Scholar]
  6. Holschuh K., Riesner D., Gassen H. G. Steps of mRNA translocation in protein biosynthesis. Nature. 1981 Oct 22;293(5834):675–677. doi: 10.1038/293675a0. [DOI] [PubMed] [Google Scholar]
  7. Inoue-Yokosawa N., Ishikawa C., Kaziro Y. The role of guanosine triphosphate in translocation reaction catalyzed by elongation factor G. J Biol Chem. 1974 Jul 10;249(13):4321–4323. [PubMed] [Google Scholar]
  8. Ishitsuka H., Kuriki Y., Kaji A. Release of transfer ribonucleic acid from ribosomes. A G factor and guanosine triphosphate-dependent reaction. J Biol Chem. 1970 Jul 10;245(13):3346–3351. [PubMed] [Google Scholar]
  9. Lucas-Lenard J., Haenni A. L. Release of transfer RNA during peptide chain elongation. Proc Natl Acad Sci U S A. 1969 May;63(1):93–97. doi: 10.1073/pnas.63.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Modolell J., Davis B. D. Rapid inhibition of polypeptide chain extension by streptomycin. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1279–1286. doi: 10.1073/pnas.61.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rheinberger H. J., Sternbach H., Nierhaus K. H. Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5310–5314. doi: 10.1073/pnas.78.9.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Richter D. Stringent factor from Escherichia coli directs ribosomal binding and release of uncharged tRNA. Proc Natl Acad Sci U S A. 1976 Mar;73(3):707–711. doi: 10.1073/pnas.73.3.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schmitt M., Neugebauer U., Bergmann C., Gassen H. G., Riesner D. Binding of tRNA in different functional states to Escherichia coli ribosomes as measured by velocity sedimentation. Eur J Biochem. 1982 Oct;127(3):525–529. doi: 10.1111/j.1432-1033.1982.tb06903.x. [DOI] [PubMed] [Google Scholar]
  14. Tanaka N., Lin Y. C., Okuyama A. Studies on translocation of F-MET-tRNA and peptidyl-tRNA with antibiotics. Biochem Biophys Res Commun. 1971 Jul 16;44(2):477–483. doi: 10.1016/0006-291x(71)90626-7. [DOI] [PubMed] [Google Scholar]
  15. Tanaka S., Kaji A. Does translocase (G-factor) require the presence of unesterified +RNA on the donor site for its action? - the effect of fusidic acid. Biochem Biophys Res Commun. 1972 Jan 14;46(1):136–142. doi: 10.1016/0006-291x(72)90641-9. [DOI] [PubMed] [Google Scholar]
  16. WARNER J. R., RICH A. THE NUMBER OF SOLUBLE RNA MOLECULES ON RETICULOCYTE POLYRIBOSOMES. Proc Natl Acad Sci U S A. 1964 Jun;51:1134–1141. doi: 10.1073/pnas.51.6.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Watanabe S. Interaction of siomycin with the acceptor site of Escherichia coli ribosomes. J Mol Biol. 1972 Jun 28;67(3):443–457. doi: 10.1016/0022-2836(72)90462-7. [DOI] [PubMed] [Google Scholar]
  18. Wurmbach P., Nierhaus K. H. Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site. Proc Natl Acad Sci U S A. 1979 May;76(5):2143–2147. doi: 10.1073/pnas.76.5.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wurmbach P., Nierhaus K. H. Isolation of the protein synthesis elongation factors EF-Tu, EF-Ts, and EF-G from Escherichia coli. Methods Enzymol. 1979;60:593–606. doi: 10.1016/s0076-6879(79)60056-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES