Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jul;80(14):4238–4242. doi: 10.1073/pnas.80.14.4238

Topography of transcription: path of the leading end of nascent RNA through the Escherichia coli transcription complex.

M M Hanna, C F Meares
PMCID: PMC384012  PMID: 6192429

Abstract

A cleavable dinucleotide photoaffinity reagent was prepared and used to map the path of the leading end of the RNA transcript across the surface of Escherichia coli RNA polymerase/T7 DNA transcription complexes. By using 5'-(4-azidophenacylthio)phosphoryladenylyl(3'-5')uridine, transcription was specifically initiated at the A1 promoter of bacteriophage T7 D111 or D123 DNA. Transcription complexes containing radiolabeled RNA chains of various lengths (4-116 nucleotides) were prepared, and the 5' end of the RNA transcript was then covalently attached to the nearby polymerase subunits or DNA by irradiation with UV light. The photoaffinity-labeled enzyme subunits and DNA were separated, the radiolabeled RNAs were cleaved from each, and the lengths and sequences of RNA attached to each component were determined. The leading end of RNA chains up to 12 bases long was found to label the DNA and the beta and beta' subunits of RNA polymerase, with more than 90% of the label going to the DNA. When the RNA transcript reached 12 bases in length, the 5' end diverged from the DNA and only the beta and beta' enzyme subunits were labeled thereafter. These two subunits were heavily labeled by RNA chains 12 to as many as 94 bases long. No significant labeling of the alpha subunit occurred. The sigma subunit was not labeled by RNAs longer than the trinucleotide.

Full text

PDF
4238

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong V. W., Eckstein F. Affinity labeling of the 3'-OH terminal binding site of the ribonucleic acid chain on deoxyribonucleic acid dependent ribonucleic acid polymerase from Escherichia coli. Biochemistry. 1979 Nov 13;18(23):5117–5122. doi: 10.1021/bi00590a014. [DOI] [PubMed] [Google Scholar]
  2. Armstrong V. W., Sternbach H., Eckstein F. Affinity labeling of Escherichia coli DNA-dependent RNA polymerase with 5-formyl-l-(alpha-D-ribofuranosyl)uracil 5'-triphosphate. Biochemistry. 1976 May 18;15(10):2086–2091. doi: 10.1021/bi00655a009. [DOI] [PubMed] [Google Scholar]
  3. Axelrod V. D., Vartikyan R. M., Aivazashvili V. A., Beabealashvili R. S. Specific termination of RNA polymerase synthesis as a method of RNA and DNA sequencing. Nucleic Acids Res. 1978 Oct;5(10):3549–3563. doi: 10.1093/nar/5.10.3549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bayley H., Knowles J. R. Photoaffinity labeling. Methods Enzymol. 1977;46:69–114. doi: 10.1016/s0076-6879(77)46012-9. [DOI] [PubMed] [Google Scholar]
  5. Burgess R. R., Jendrisak J. J. A procedure for the rapid, large-scall purification of Escherichia coli DNA-dependent RNA polymerase involving Polymin P precipitation and DNA-cellulose chromatography. Biochemistry. 1975 Oct 21;14(21):4634–4638. doi: 10.1021/bi00692a011. [DOI] [PubMed] [Google Scholar]
  6. Coggins J. R., Lumsden J., Malcolm A. D. A study of the quaternary structure of Escherichia coli RNA polymerase using bis(imido esters). Biochemistry. 1977 Mar 22;16(6):1111–1116. doi: 10.1021/bi00625a013. [DOI] [PubMed] [Google Scholar]
  7. DeRiemer L. H., Meares C. F. Early steps in the path of nascent ribonucleic acid across the surface of ribonucleic acid polymerase, determined by photoaffinity labeling. Biochemistry. 1981 Mar 17;20(6):1612–1617. doi: 10.1021/bi00509a031. [DOI] [PubMed] [Google Scholar]
  8. Downey K. M., So A. G. Studies on the kinetics of ribonucleic acid chain initiation and elongation. Biochemistry. 1970 Jun 9;9(12):2520–2525. doi: 10.1021/bi00814a019. [DOI] [PubMed] [Google Scholar]
  9. Fisher R., Blumenthal T. Analysis of RNA polymerase by trypsin cleavage. Evidence for a specific association between subunits sigma and beta involved in the closed to open complex transition. J Biol Chem. 1980 Nov 25;255(22):11056–11062. [PubMed] [Google Scholar]
  10. Frischauf A. M., Scheit K. H. Affinity labeling of E. coli RNA polymerase with substrate and template analogues. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1227–1233. doi: 10.1016/0006-291x(73)90596-2. [DOI] [PubMed] [Google Scholar]
  11. Gamper H. B., Hearst J. E. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell. 1982 May;29(1):81–90. doi: 10.1016/0092-8674(82)90092-7. [DOI] [PubMed] [Google Scholar]
  12. Grachev M. A., Zaychikov E. F. Photo-modification studies of the contacts of the 5'-terminus of growing RNA with the subunits of RNA-polymerase. FEBS Lett. 1981 Jul 20;130(1):23–26. doi: 10.1016/0014-5793(81)80657-6. [DOI] [PubMed] [Google Scholar]
  13. Hansen U. M., McClure W. R. Role of the sigma subunit of Escherichia coli RNA polymerase in initiation. II. Release of sigma from ternary complexes. J Biol Chem. 1980 Oct 25;255(20):9564–9570. [PubMed] [Google Scholar]
  14. Heumann H., Meisenberger O., Pilz I. Small-angle x-ray study of aggregates of DNA-dependent RNA polymerase from Escherichia coli. FEBS Lett. 1982 Feb 22;138(2):273–276. doi: 10.1016/0014-5793(82)80459-6. [DOI] [PubMed] [Google Scholar]
  15. Hillel Z., Wu C. W. Subunit topography of RNA polymerase from Escherichia coli. A cross-linking study with bifunctional reagents. Biochemistry. 1977 Jul 26;16(15):3334–3342. doi: 10.1021/bi00634a008. [DOI] [PubMed] [Google Scholar]
  16. Kumar S. A., Krakow J. S. Studies on the product binding sites of the Azotobacter vinelandii ribonucleic acid polymerase. J Biol Chem. 1975 Apr 25;250(8):2878–2884. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lill H. R., Hartmann G. R. Digestion with matrix-bound proteases as a possible probe for the topography of the DNA-dependent RNA polymerase from Escherichia coli. Eur J Biochem. 1975 May;54(1):45–53. doi: 10.1111/j.1432-1033.1975.tb04112.x. [DOI] [PubMed] [Google Scholar]
  19. Lowe P. A., Hager D. A., Burgess R. R. Purification and properties of the sigma subunit of Escherichia coli DNA-dependent RNA polymerase. Biochemistry. 1979 Apr 3;18(7):1344–1352. doi: 10.1021/bi00574a034. [DOI] [PubMed] [Google Scholar]
  20. Lowe P. A., Malcolm A. D. Structural properties of Escherichia coli RNA polymerase Subunits. Eur J Biochem. 1976 Apr 15;64(1):177–188. doi: 10.1111/j.1432-1033.1976.tb10286.x. [DOI] [PubMed] [Google Scholar]
  21. Meisenberger O., Heumann H., Pilz I. Small-angle X-ray study of DNA-dependent RNA polymerase core enzyme and partial complex beta alpha 2 from Escherichia coli. FEBS Lett. 1980 Dec 15;122(1):117–120. doi: 10.1016/0014-5793(80)80415-7. [DOI] [PubMed] [Google Scholar]
  22. Meisenberger O., Pilz I., Heumann H. Small-angle x-ray study of DNA-dependent RNA polymerase subunit alpha 2 from Escherichia coli. FEBS Lett. 1980 Oct 20;120(1):57–60. doi: 10.1016/0014-5793(80)81045-3. [DOI] [PubMed] [Google Scholar]
  23. Melnikova A. F., Beabealashvilli R., Mirzabekov A. D. A study of unwinding of DNA and shielding of the DNA grooves by RNA polymerase by using methylation with dimethylsulphate. Eur J Biochem. 1978 Mar;84(1):301–309. doi: 10.1111/j.1432-1033.1978.tb12169.x. [DOI] [PubMed] [Google Scholar]
  24. Okada M., Vergne J., Brahms J. Subunit topography of RNA polymerase (E. coli) in the complex with DNA. Nucleic Acids Res. 1978 Jun;5(6):1845–1862. doi: 10.1093/nar/5.6.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Park C. S., Hillel Z., Wu C. W. DNA strand specificity in promoter recognition by RNA polymerase. Nucleic Acids Res. 1980 Dec 11;8(23):5895–5912. doi: 10.1093/nar/8.23.5895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pilz I., Kratky O., Rabussay D. Studies on the conformation of DNA-dependent RNA polymerase in solution by small-angle x-ray measurements. Eur J Biochem. 1972 Jul 13;28(2):205–220. doi: 10.1111/j.1432-1033.1972.tb01904.x. [DOI] [PubMed] [Google Scholar]
  27. Reisbig R. R., Woody A. Y., Woody R. W. Spectroscopic analysis of the interaction of Escherichia coli DNA-dependent RNA polymerase with T7 DNA and synthetic polynucleotides. J Biol Chem. 1979 Nov 25;254(22):11208–11217. [PubMed] [Google Scholar]
  28. Shen C. K., Hearst J. E. Photochemical crosslinking of transcription complexes with psoralen. I. Covalent attachment of in vitro SV40 nascent RNA to its double-stranded DNA template. Nucleic Acids Res. 1978 Apr;5(4):1429–1441. doi: 10.1093/nar/5.4.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Siebenlist U. RNA polymerase unwinds an 11-base pair segment of a phage T7 promoter. Nature. 1979 Jun 14;279(5714):651–652. doi: 10.1038/279651a0. [DOI] [PubMed] [Google Scholar]
  30. Siebenlist U., Simpson R. B., Gilbert W. E. coli RNA polymerase interacts homologously with two different promoters. Cell. 1980 Jun;20(2):269–281. doi: 10.1016/0092-8674(80)90613-3. [DOI] [PubMed] [Google Scholar]
  31. Simpson R. B. The molecular topography of RNA polymerase-promoter interaction. Cell. 1979 Oct;18(2):277–285. doi: 10.1016/0092-8674(79)90047-3. [DOI] [PubMed] [Google Scholar]
  32. Stöckel P., May R., Strell I., Cejka Z., Hoppe W., Heumann H., Zillig W., Crespi H. L. The subunit positions within RNA polymerase holoenzyme determined by triangulation of centre-to-centre distances. Eur J Biochem. 1980 Nov;112(2):419–423. doi: 10.1111/j.1432-1033.1980.tb07221.x. [DOI] [PubMed] [Google Scholar]
  33. Stöckel P., May R., Strell I., Cejka Z., Hoppe W., Heumann H., Zillig W., Crespi H. The core subunit structure in RNA polymerase holoenzyme determined by neutron small-angle scattering. Eur J Biochem. 1980 Nov;112(2):411–417. doi: 10.1111/j.1432-1033.1980.tb07220.x. [DOI] [PubMed] [Google Scholar]
  34. Wu C. W., Wu F. Y., Speckhard D. C. Subunit location of the intrinsic divalent metal ions in RNA polymerase from Escherichia coli. Biochemistry. 1977 Dec 13;16(25):5449–5454. doi: 10.1021/bi00644a008. [DOI] [PubMed] [Google Scholar]
  35. Wu G. J., Bruening G. Two proteins from cowpea mosaic virus. Virology. 1971 Dec;46(3):596–612. doi: 10.1016/0042-6822(71)90063-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES