Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jul;80(14):4243–4247. doi: 10.1073/pnas.80.14.4243

Biphasic regulation by dibutyryl cyclic AMP of tubulin and actin mRNA levels in neuroblastoma cells.

I Ginzburg, S Rybak, Y Kimhi, U Z Littauer
PMCID: PMC384013  PMID: 6308610

Abstract

Blot hybridization analysis that used labeled tubulin cDNA probes revealed that N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate [dibutyryl cyclic AMP (Bt2cAMP)] initially increases and later decreases the level of tubulin mRNA in a neuroblastoma-glioma hybrid cell line as well as in the parent cells. A significant increase in tubulin mRNA sequences is already evident 1 hr after the addition of Bt2cAMP to the neuroblastoma cells, and a maximal induction of 2-fold is seen after 12 hr. Continued treatment with Bt2cAMP for 4 days results in a down-regulation of the initial tubulin mRNA level independently of cell density. In the glioma cells Bt2cAMP also rapidly increases the level of tubulin mRNA sequences, reaching a maximum within 6 hr. However, in these cells the subsequent decrease in tubulin mRNA content depends on the culture's phase of growth: cells at the logarithmic growth phase do not down-regulate the tubulin mRNA content even after prolonged treatment with Bt2cAMP, whereas confluent cells do. The hybrid cell line manifests intermediate characteristics in Bt2cAMP regulation of tubulin mRNA level. The time course of induction and down-regulation of tubulin mRNA content observed in the hybrid cells is similar to that of the parent neuroblastoma, whereas the sensitivity to induction is glioma-like and is 8-fold over the initial level. Blot hybridization with labeled actin cDNA probes showed a similar but not identical induction of actin mRNA synthesis with the hybrid and glioma cells, whereas no significant change was observed with the neuroblastoma cells. Moreover, prolonged treatment with Bt2cAMP of all these cell lines did not result in down-regulation of actin mRNA sequences below the initial control value. It was also observed that the level of tubulin sequences in mRNA isolated from 12-day-old rat brain was higher than that in the newborn brain. However, at an age of 30 days, the level of tubulin sequences decreases to about 75% of the newborn level.

Full text

PDF
4243

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano T., Hamprecht B., Kemper W. High activity of choline acetyltransferase induced in neuroblastoma x glia hybrid cells. Exp Cell Res. 1974 Apr;85(2):399–408. doi: 10.1016/0014-4827(74)90142-6. [DOI] [PubMed] [Google Scholar]
  2. Amano T., Richelson E., Nirenberg M. Neurotransmitter synthesis by neuroblastoma clones (neuroblast differentiation-cell culture-choline acetyltransferase-acetylcholinesterase-tyrosine hydroxylase-axons-dendrites). Proc Natl Acad Sci U S A. 1972 Jan;69(1):258–263. doi: 10.1073/pnas.69.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ben-Ze'ev A., Farmer S. R., Penman S. Mechanisms of regulating tubulin synthesis in cultured mammalian cells. Cell. 1979 Jun;17(2):319–325. doi: 10.1016/0092-8674(79)90157-0. [DOI] [PubMed] [Google Scholar]
  4. Blume A., Gilbert F., Wilson S., Farber J., Rosenberg R., Nirenberg M. Regulation of acetylcholinesterase in neuroblastoma cells. Proc Natl Acad Sci U S A. 1970 Oct;67(2):786–792. doi: 10.1073/pnas.67.2.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byus C. V., Klimpel G. R., Lucas D. O., Russell D. H. Type I and type II cyclic AMP-dependent protein kinase as opposite effectors of lymphocyte mitogenesis. Nature. 1977 Jul 7;268(5615):63–64. doi: 10.1038/268063a0. [DOI] [PubMed] [Google Scholar]
  6. Chan K. Y., Baxter C. F. Compartments of tubulin and tubulin-like proteins in differentiating neubroblastoma cells. Brain Res. 1979 Sep 28;174(1):135–152. doi: 10.1016/0006-8993(79)90809-6. [DOI] [PubMed] [Google Scholar]
  7. Cleveland D. W., Lopata M. A., Sherline P., Kirschner M. W. Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell. 1981 Aug;25(2):537–546. doi: 10.1016/0092-8674(81)90072-6. [DOI] [PubMed] [Google Scholar]
  8. Dahl J. L., Weibel V. J. Changes in tubulin heterogeneity during postnatal development of rat brain. Biochem Biophys Res Commun. 1979 Feb 14;86(3):822–828. doi: 10.1016/0006-291x(79)91786-8. [DOI] [PubMed] [Google Scholar]
  9. Edde B., Portier M. M., Sahuquillo C., Jeantet C., Gros F. Changes in some cytoskeletal proteins during neuroblastoma cell differentiation. Biochimie. 1982 Feb;64(2):141–151. doi: 10.1016/s0300-9084(82)80416-1. [DOI] [PubMed] [Google Scholar]
  10. Fellous A., Ginzburg I., Littauer U. Z. Modulation of tubulin mRNA levels by interferon in human lymphoblastoid cells. EMBO J. 1982;1(7):835–839. doi: 10.1002/j.1460-2075.1982.tb01256.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ginzburg I., Behar L., Givol D., Littauer U. Z. The nucleotide sequence of rat alpha-tubulin: 3'-end characteristics, and evolutionary conservation. Nucleic Acids Res. 1981 Jun 25;9(12):2691–2697. doi: 10.1093/nar/9.12.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ginzburg I., Behar L., Givol D., Littauer U. Z. The nucleotide sequence of rat alpha-tubulin: 3'-end characteristics, and evolutionary conservation. Nucleic Acids Res. 1981 Jun 25;9(12):2691–2697. doi: 10.1093/nar/9.12.2691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gozes I., Littauer U. Z. Tubulin microheterogeneity increases with rat brain maturation. Nature. 1978 Nov 23;276(5686):411–413. doi: 10.1038/276411a0. [DOI] [PubMed] [Google Scholar]
  14. Grouse L. D., Letendre C. H., Schrier B. K. Sequence complexity and frequency distribution of poly(A)-containing messenger RNA sequences from the glioma cell line (C6. J Neurochem. 1979 Aug;33(2):583–585. doi: 10.1111/j.1471-4159.1979.tb05193.x. [DOI] [PubMed] [Google Scholar]
  15. Grouse L. D., Schrier B. K., Letendre C. H., Zubairi M. Y., Nelson P. G. Neuroblastoma differentiation involves both the disappearance of old and the appearance of new poly(A)+ messenger RNA sequences in polyribosomes. J Biol Chem. 1980 May 10;255(9):3871–3877. [PubMed] [Google Scholar]
  16. Haddox M. K., Magun B. E., Russell D. H. Differential expression of type I and type II cyclic AMP-dependent protein kinases during cell cycle and cyclic AMP-induced growth arrest. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3445–3449. doi: 10.1073/pnas.77.6.3445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hamprecht B. Structural, electrophysiological, biochemical, and pharmacological properties of neuroblastoma-glioma cell hybrids in cell culture. Int Rev Cytol. 1977;49:99–170. doi: 10.1016/s0074-7696(08)61948-8. [DOI] [PubMed] [Google Scholar]
  18. Isenberg G., Small J. V., Kreutzberg G. W. The cytoskeleton and its influence on shape, motility and receptor segregation in neuroblastoma cells. Prog Brain Res. 1979;51:45–50. doi: 10.1016/S0079-6123(08)61292-3. [DOI] [PubMed] [Google Scholar]
  19. Kimhi Y., Palfrey C., Spector I., Barak Y., Littauer U. Z. Maturation of neuroblastoma cells in the presence of dimethylsulfoxide. Proc Natl Acad Sci U S A. 1976 Feb;73(2):462–466. doi: 10.1073/pnas.73.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klee W. A., Nirenberg M. A neuroblastoma times glioma hybrid cell line with morphine receptors. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3474–3477. doi: 10.1073/pnas.71.9.3474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lennon A. M., Francon J., Fellous A., Nunez J. Rat, mouse, and guinea pig brain development and microtubule assembly. J Neurochem. 1980 Oct;35(4):804–813. doi: 10.1111/j.1471-4159.1980.tb07076.x. [DOI] [PubMed] [Google Scholar]
  22. Morrison M. R., Pardue S., Griffin W. S. Developmental alterations in the levels of translationally active messenger RNAs in the postnatal rat cerebellum. J Biol Chem. 1981 Apr 10;256(7):3550–3556. [PubMed] [Google Scholar]
  23. Morrison M. R., Pardue S., Prashad N., Croall D. E., Brodeur R. Relative increase in polysomal mRNA for R1 cAMP-binding protein in neuroblastoma cells treated with 1,N6-dibutyryl-adenosine 3',-5'-phosphate. Eur J Biochem. 1980 May;106(2):463–472. doi: 10.1111/j.1432-1033.1980.tb04593.x. [DOI] [PubMed] [Google Scholar]
  24. Nelson P., Christian C., Nirenberg M. Synapse formation between clonal neuroblastoma X glioma hybrid cells and striated muscle cells. Proc Natl Acad Sci U S A. 1976 Jan;73(1):123–127. doi: 10.1073/pnas.73.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nudel U., Katcoff D., Zakut R., Shani M., Carmon Y., Finer M., Czosnek H., Ginsburg I., Yaffe D. Isolation and characterization of rat skeletal muscle and cytoplasmic actin genes. Proc Natl Acad Sci U S A. 1982 May;79(9):2763–2767. doi: 10.1073/pnas.79.9.2763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  27. Pelham H. R., Jackson R. J. An efficient mRNA-dependent translation system from reticulocyte lysates. Eur J Biochem. 1976 Aug 1;67(1):247–256. doi: 10.1111/j.1432-1033.1976.tb10656.x. [DOI] [PubMed] [Google Scholar]
  28. Prasad K. N. Differentiation of neuroblastoma cells in culture. Biol Rev Camb Philos Soc. 1975 May;50(2):129–165. doi: 10.1111/j.1469-185x.1975.tb01055.x. [DOI] [PubMed] [Google Scholar]
  29. Prashad N., Rosenberg R. N. Induction of cyclic AMP-binding proteins by dibutyryl cyclic AMP in mouse neuroblastoma cells. Biochim Biophys Acta. 1978 Apr 3;539(4):459–469. doi: 10.1016/0304-4165(78)90079-x. [DOI] [PubMed] [Google Scholar]
  30. Schmitt H. Control of tubulin and actin synthesis and assembly during differentiation of neuroblastoma cells. Brain Res. 1976 Oct 8;115(1):165–173. doi: 10.1016/0006-8993(76)90833-7. [DOI] [PubMed] [Google Scholar]
  31. Schmitt H., Gozes I., Littauer U. Z. Decrease in levels and rates of synthesis of tubulin and actin in developing rat brain. Brain Res. 1977 Feb;121(2):327–342. doi: 10.1016/0006-8993(77)90155-x. [DOI] [PubMed] [Google Scholar]
  32. Seeds N. W., Gilman A. G., Amano T., Nirenberg M. W. Regulation of axon formation by clonal lines of a neural tumor. Proc Natl Acad Sci U S A. 1970 May;66(1):160–167. doi: 10.1073/pnas.66.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spiegelman B. M., Farmer S. R. Decreases in tubulin and actin gene expression prior to morphological differentiation of 3T3 adipocytes. Cell. 1982 May;29(1):53–60. doi: 10.1016/0092-8674(82)90089-7. [DOI] [PubMed] [Google Scholar]
  34. Waymire J. C., Weiner N., Prasad K. N. Regulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells: elevation induced by analogs of adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2241–2245. doi: 10.1073/pnas.69.8.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES