Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jul;80(14):4398–4402. doi: 10.1073/pnas.80.14.4398

Trans-acting temporal locus within the beta-glucuronidase gene complex.

A J Lusis, V M Chapman, R W Wangenstein, K Paigen
PMCID: PMC384045  PMID: 6576346

Abstract

Mice carrying the [Gus]H haplotype of the beta-glucuronidase gene complex have considerably decreased enzyme levels and a decreased rate of enzyme synthesis. This is now shown to result from the action of two regulatory loci within the gene complex. One is a systemic regulator, Gus-u, that acts cis to cause a uniform reduction in enzyme levels in all tissues. The other is a temporal locus, Gus-t, that acts trans to cause abrupt switches in the rate of enzyme synthesis in only certain tissues and at characteristic stages of development. The distinction between these two loci was made possible by the introduction of a method for quantitating the relative numbers of A and H allozyme subunits in beta-glucuronidase tetramers. The procedure involves purification of the enzyme, cleavage at methionyl residues with CNBr, isoelectric focusing to separate the peptides, and quantitation of the peptide containing the A/H amino acid substitution. The presence of a trans-acting regulatory locus within a gene complex raises evolutionary and functional questions about why it is located there and how it acts.

Full text

PDF
4398

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham I., Doane W. W. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4446–4450. doi: 10.1073/pnas.75.9.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger F. G., Breen G. A., Paigen K. Genetic determination of the developmental program for mouse liver beta-galactosidase: involvement of sites proximate to and distant from the structural gene. Genetics. 1979 Aug;92(4):1187–1203. doi: 10.1093/genetics/92.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boubelík M., Lengerová A. Analysis of genetic differences in early versus late agglutinability with H-2 antibodies of neonatal mouse erythrocytes. J Immunogenet. 1977 Oct;4(5):341–351. doi: 10.1111/j.1744-313x.1977.tb00917.x. [DOI] [PubMed] [Google Scholar]
  4. Boubelík M., Lengerová A., Bailey D. W., Matousek V. A model for genetic analysis of programmed gene expression as reflected in the development of membrane antigens. Dev Biol. 1975 Nov;47(1):206–214. doi: 10.1016/0012-1606(75)90274-2. [DOI] [PubMed] [Google Scholar]
  5. Dickinson W. J. A genetic locus affecting the developmental expression of an enzyme in Drosophilia melanogaster. Dev Biol. 1975 Jan;42(1):131–140. doi: 10.1016/0012-1606(75)90319-x. [DOI] [PubMed] [Google Scholar]
  6. Dickinson W. J. Genetic control of enzyme expression in Drosophila: a locus influencing tissue specificity of aldehyde oxidase. J Exp Zool. 1978 Dec;206(3):333–341. doi: 10.1002/jez.1402060304. [DOI] [PubMed] [Google Scholar]
  7. Herrup K., Mullen R. J. Biochemical and genetic factors in the heat inactivation of murine beta-glucuronidase. Biochem Genet. 1977 Aug;15(7-8):641–653. doi: 10.1007/BF00484095. [DOI] [PubMed] [Google Scholar]
  8. Holmes R. S. Genetics and ontogeny of alcohol dehydrogenase isozymes in the mouse: evidence for a cis-acting regulator gene (Adt-i) controlling C2 isozyme expression in reproductive tissues and close linkage of Adh-3 and Adt-i on chromosome 3. Biochem Genet. 1979 Jun;17(5-6):461–472. doi: 10.1007/BF00498884. [DOI] [PubMed] [Google Scholar]
  9. LAW L. W., MORROW A. G., GREENSPAN E. M. Inheritance of low liver glucuronidase activity in the mouse. J Natl Cancer Inst. 1952 Feb;12(4):909–916. [PubMed] [Google Scholar]
  10. Lusis A. J., Chapman V. M., Herbstman C., Paigen K. Quantitation of cis versus trans regulation of mouse beta-glucuronidase. Action of alleles of the Gus-r locus determining androgen inducibility. J Biol Chem. 1980 Oct 10;255(19):8959–8962. [PubMed] [Google Scholar]
  11. Lusis A. J., Paigen K. Genetic determination of the alpha-galactosidase developmental program in mice. Cell. 1975 Nov;6(3):371–378. doi: 10.1016/0092-8674(75)90186-5. [DOI] [PubMed] [Google Scholar]
  12. Lusis A. J., Paigen K. The large scale isolation of mouse beta-glucuronidase and comparison of allozymes. J Biol Chem. 1978 Oct 25;253(20):7336–7345. [PubMed] [Google Scholar]
  13. Lusis A. J., Tomino S., Paigen K. Isolation, characterization, and radioimmunoassay of murine egasyn, a protein stabilizing glucuronidase membrane binding. J Biol Chem. 1976 Dec 25;251(24):7753–7760. [PubMed] [Google Scholar]
  14. Lusis A. J., West J. D. X-linked and autosomal genes controlling mouse alpha-galactosidase expression. Genetics. 1978 Feb;88(2):327–342. doi: 10.1093/genetics/88.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meisler M., Paigen K. Coordinated development of -glucuronidase and -galactosidase in mouse organs. Science. 1972 Sep 8;177(4052):894–896. doi: 10.1126/science.177.4052.894. [DOI] [PubMed] [Google Scholar]
  16. Meredith S. A., Ganschow R. E. Apparent trans control of murine beta-glucuronidase synthesis by a temporal genetic element. Genetics. 1978 Dec;90(4):725–734. doi: 10.1093/genetics/90.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal Biochem. 1980 Jul 1;105(2):361–363. doi: 10.1016/0003-2697(80)90470-4. [DOI] [PubMed] [Google Scholar]
  18. PAIGEN K. The genetic control of enzyme activity during differentiation. Proc Natl Acad Sci U S A. 1961 Oct 15;47:1641–1649. doi: 10.1073/pnas.47.10.1641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Paigen K. Acid hydrolases as models of genetic control. Annu Rev Genet. 1979;13:417–466. doi: 10.1146/annurev.ge.13.120179.002221. [DOI] [PubMed] [Google Scholar]
  20. Peterson A. C., Wong G. G. Genetic regulation of glucose phosphate isomerase in mouse oocytes. Nature. 1978 Nov 16;276(5685):267–269. doi: 10.1038/276267a0. [DOI] [PubMed] [Google Scholar]
  21. Pfister K., Paigen K., Watson G., Chapman V. Expression of beta-glucuronidase haplotypes in prototype and congenic mouse strains. Biochem Genet. 1982 Jun;20(5-6):519–536. doi: 10.1007/BF00484702. [DOI] [PubMed] [Google Scholar]
  22. Scandalios J. G., Chang D. Y., McMillin D. E., Tsaftaris A., Moll R. H. Genetic regulation of the catalase developmental program in maize scutellum: Identification of a temporal regulatory gene. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5360–5364. doi: 10.1073/pnas.77.9.5360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schwartz D. Genetic Studies on Mutant Enzymes in Maize. III. Control of Gene Action in the Synthesis of Ph 7.5 Esterase. Genetics. 1962 Nov;47(11):1609–1615. doi: 10.1093/genetics/47.11.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES