Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Jul;80(14):4446–4449. doi: 10.1073/pnas.80.14.4446

Targeted mutation at cytosine-containing pyrimidine dimers: studies of Escherichia coli B/r with acetophenone and 313-nm light.

D Fix, R Bockrath
PMCID: PMC384055  PMID: 6348769

Abstract

We have tested the two-event model for UV mutagenesis producing class 2 suppressor mutations at glutamine tRNA genes in Escherichia coli. In the model used, the induction/indexing lesion is any type of pyrimidine dimer and the premutational photoproduct at the target site is a cytosine-containing dimer. Specific mutation-frequency responses were analyzed under conditions in which the ratio of thymine-thymine dimers to cytosine-containing dimers was modified by using 313-nm light and 0.0%, 0.1%, or 0.2% acetophenone. Changes observed in the production of class 2 suppressor mutations were consistent with the model and suggested that the G X C leads to A X T transitions responsible for class 2 suppressor mutations are targeted by cytosine-containing pyrimidine dimers at the mutational sites.

Full text

PDF
4446

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bockrath R. C., Palmer J. E. Differential repair of premutational UV-lesions at tRNA genes in E. coli. Mol Gen Genet. 1977 Nov 14;156(2):133–140. doi: 10.1007/BF00283485. [DOI] [PubMed] [Google Scholar]
  2. Bockrath R., Cheung M. K. The role of nutrient broth supplementation in UV mutagenesis of E. coli. Mutat Res. 1973 Jul;19(1):23–32. doi: 10.1016/0027-5107(73)90109-7. [DOI] [PubMed] [Google Scholar]
  3. Bockrath R., Harper D., Kristoff S. Crowding depression of UV-mutagenesis in E. coli. Mutat Res. 1980 Nov;73(1):43–58. doi: 10.1016/0027-5107(80)90134-7. [DOI] [PubMed] [Google Scholar]
  4. Brash D. E., Haseltine W. A. UV-induced mutation hotspots occur at DNA damage hotspots. Nature. 1982 Jul 8;298(5870):189–192. doi: 10.1038/298189a0. [DOI] [PubMed] [Google Scholar]
  5. Bridges B. A. A note on the mechanism of UV mutagenesis in Escherichia coli. Mutat Res. 1966 Aug;3(4):273–279. doi: 10.1016/0027-5107(66)90034-0. [DOI] [PubMed] [Google Scholar]
  6. Cheung M. K., Bockrath R. C. On the specificity of UV mutagenesis in E. coli. Mutat Res. 1970 Nov;10(5):521–523. doi: 10.1016/0027-5107(70)90015-1. [DOI] [PubMed] [Google Scholar]
  7. Ellison M. J., Childs J. D. Pyrimidine dimers induced in Escherichia coli DNA by ultraviolet radiation present in sunlight. Photochem Photobiol. 1981 Oct;34(4):465–469. [PubMed] [Google Scholar]
  8. Fix D., Bockrath R. Thermal resistance to photoreactivation of specific mutations potentiated in E. coli B/r ung by ultraviolet light. Mol Gen Genet. 1981;182(1):7–11. doi: 10.1007/BF00422759. [DOI] [PubMed] [Google Scholar]
  9. Hodges N. D., Moss S. H., Davies D. J. The role of pyrimidine dimers and non-dimer damage in the inactivation of Escherichia coli by UV radiation. Photochem Photobiol. 1980 Jun;31(6):571–577. doi: 10.1111/j.1751-1097.1980.tb03748.x. [DOI] [PubMed] [Google Scholar]
  10. Inokuchi H., Kodaira M., Yamao F., Ozeki H. Identification of transfer RNA suppressors in Escherichia coli. II. Duplicate genes for tRNA2Gln. J Mol Biol. 1979 Aug 25;132(4):663–677. doi: 10.1016/0022-2836(79)90381-4. [DOI] [PubMed] [Google Scholar]
  11. Inokuchi H., Yamao F., Sakano H., Ozeki H. Identification of transfer RNA suppressors in Escherichia coli. I. Amber suppressor su+2, an anticodon mutant of tRNA2Gln. J Mol Biol. 1979 Aug 25;132(4):649–662. doi: 10.1016/0022-2836(79)90380-2. [DOI] [PubMed] [Google Scholar]
  12. Kato T., Shinoura Y., Templin A., Clark A. J. Analysis of ultraviolet light-induced suppressor mutations in the strain of Escherichia coli K-12 AB1157: an implication for molecular mechanisms of UV mutagenesis. Mol Gen Genet. 1980;180(2):283–291. doi: 10.1007/BF00425840. [DOI] [PubMed] [Google Scholar]
  13. Kristoff S., Bockrath R. Loss of photoreversibility for UV mutation in E. coli using 405 nm or near-UV challenge. Mutat Res. 1983 May;109(2):143–153. doi: 10.1016/0027-5107(83)90042-8. [DOI] [PubMed] [Google Scholar]
  14. LeClerc J. E., Istock N. L. Specificity of UV mutagenesis in the lac promoter of M13lac hybrid phage DNA. Nature. 1982 Jun 17;297(5867):596–598. doi: 10.1038/297596a0. [DOI] [PubMed] [Google Scholar]
  15. Little J. W., Mount D. W. The SOS regulatory system of Escherichia coli. Cell. 1982 May;29(1):11–22. doi: 10.1016/0092-8674(82)90085-x. [DOI] [PubMed] [Google Scholar]
  16. MOROWITZ H. J. Absorption effects in volume irradiation of microorganisms. Science. 1950 Mar 3;111(2879):229–229. doi: 10.1126/science.111.2879.229-a. [DOI] [PubMed] [Google Scholar]
  17. Mennigmann H. D. Pyrimidine dimers as pre-mutational lesions in Escherichia coli WP2 Hcr. Mol Gen Genet. 1972;117(2):167–186. doi: 10.1007/BF00267613. [DOI] [PubMed] [Google Scholar]
  18. Nakajima N., Ozeki H., Shimura Y. Organization and structure of an E. coli tRNA operon containing seven tRNA genes. Cell. 1981 Jan;23(1):239–249. doi: 10.1016/0092-8674(81)90288-9. [DOI] [PubMed] [Google Scholar]
  19. Osborn M., Person S., Phillips S., Funk F. A determination of mutagen specificity in bacteria using nonsense mutants of bacteriophage T4. J Mol Biol. 1967 Jun 28;26(3):437–447. doi: 10.1016/0022-2836(67)90314-2. [DOI] [PubMed] [Google Scholar]
  20. Person S., McCloskey J. A., Snipes W., Bockrath R. C. Ultraviolet mutagenesis and its repair in an Escherichia coli strain containing a nonsense codon. Genetics. 1974 Dec;78(4):1035–1049. doi: 10.1093/genetics/78.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Person S., Osborn M. The conversion of amber suppressors to ochre suppressors. Proc Natl Acad Sci U S A. 1968 Jul;60(3):1030–1037. doi: 10.1073/pnas.60.3.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Strauss B., Rabkin S., Sagher D., Moore P. The role of DNA polymerase in base substitution mutagenesis on non-instructional templates. Biochimie. 1982 Aug-Sep;64(8-9):829–838. doi: 10.1016/s0300-9084(82)80138-7. [DOI] [PubMed] [Google Scholar]
  23. Todd P. A., Glickman B. W. Mutational specificity of UV light in Escherichia coli: indications for a role of DNA secondary structure. Proc Natl Acad Sci U S A. 1982 Jul;79(13):4123–4127. doi: 10.1073/pnas.79.13.4123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Witkin E. M., Wermundsen I. E. Targeted and untargeted mutagenesis by various inducers of SOS functions in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):881–886. doi: 10.1101/sqb.1979.043.01.095. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES