Abstract
There is increasing evidence for an additional acute, nongenomic action of the mineralocorticoid hormone aldosterone on renal epithelial cells, leading to a two-step model of mineralocorticoid action on electrolyte excretion. We investigated the acute effect of aldosterone on intracellular free Ca2+ and on intracellular pH in an aldosterone-sensitive Madin-Darby canine kidney cell clone. Within seconds of application of aldosterone, but not of the glucocorticoid hydrocortisone, there was a 3-fold sustained increase of intracellular Ca2+ at a half-maximal concentration of 10(-10) mol/liter. Omission of extracellular Ca2+ prevented this hormone response. In the presence of extracellular Ca2+ aldosterone led to intracellular alkalinization. The Na+/H+ exchange inhibitor ethyl-isopropanol-amiloride (EIPA) prevented the aldosterone-induced alkalinization but not the aldosterone-induced increase of intracellular Ca2+. Omission of extracellular Ca2+ also prevented aldosterone-induced alkalinization. Instead, aldosterone led to a Zn(2+)-dependent intracellular acidification in the presence of EIPA, indicative of an increase of plasma membrane proton conductance. Under control conditions, Zn2+ prevented the aldosterone-induced alkalinization completely. We conclude that aldosterone stimulated net-entry of Ca2+ from the extracellular compartment and a plasma membrane H+ conductance as prerequisites for the stimulation of plasma membrane Na+/H+ exchange which in turn modulates K+ channel acitivity. It is probable that the aldosterone-sensitive H+ conductance maintains Na+/H+ exchange activity by providing an acidic environment in the vicinity of the exchanger. Thus, genomic action of aldosterone determines cellular transport equipment, whereas the nongenomic action regulates transporter activity that requires responses within seconds or minutes, which explains the rapid effects on electrolyte excretion.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bleich M., Schlatter E., Greger R. The luminal K+ channel of the thick ascending limb of Henle's loop. Pflugers Arch. 1990 Jan;415(4):449–460. doi: 10.1007/BF00373623. [DOI] [PubMed] [Google Scholar]
- Christ M., Eisen C., Aktas J., Theisen K., Wehling M. The inositol-1,4,5-trisphosphate system is involved in rapid effects of aldosterone in human mononuclear leukocytes. J Clin Endocrinol Metab. 1993 Dec;77(6):1452–1457. doi: 10.1210/jcem.77.6.8263127. [DOI] [PubMed] [Google Scholar]
- Cooper G. J., Hunter M. Na(+)-H+ exchange in frog early distal tubule: effect of aldosterone on the set-point. J Physiol. 1994 Sep 15;479(Pt 3):423–432. doi: 10.1113/jphysiol.1994.sp020306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dai L. J., Quamme G. A. Atrial natriuretic peptide initiates Ca2+ transients in isolated renal cortical thick ascending limb cells. Am J Physiol. 1993 Oct;265(4 Pt 2):F592–F597. doi: 10.1152/ajprenal.1993.265.4.F592. [DOI] [PubMed] [Google Scholar]
- Demaurex N., Orlowski J., Brisseau G., Woodside M., Grinstein S. The mammalian Na+/H+ antiporters NHE-1, NHE-2, and NHE-3 are electroneutral and voltage independent, but can couple to an H+ conductance. J Gen Physiol. 1995 Jul;106(1):85–111. doi: 10.1085/jgp.106.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreher D., Rochat T. Hyperoxia induces alkalinization and dome formation in MDCK epithelial cells. Am J Physiol. 1992 Feb;262(2 Pt 1):C358–C364. doi: 10.1152/ajpcell.1992.262.2.C358. [DOI] [PubMed] [Google Scholar]
- GANONG W. F., MULROW P. J. Rate of change in sodium and potassium excretion after injection of aldosterone into the aorta and renal artery of the dog. Am J Physiol. 1958 Nov;195(2):337–342. doi: 10.1152/ajplegacy.1958.195.2.337. [DOI] [PubMed] [Google Scholar]
- Gekle M., Wünsch S., Oberleithner H., Silbernagl S. Characterization of two MDCK-cell subtypes as a model system to study principal cell and intercalated cell properties. Pflugers Arch. 1994 Sep;428(2):157–162. doi: 10.1007/BF00374853. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hunter M., Lopes A. G., Boulpaep E. L., Giebisch G. H. Single channel recordings of calcium-activated potassium channels in the apical membrane of rabbit cortical collecting tubules. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4237–4239. doi: 10.1073/pnas.81.13.4237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurst A. M., Hunter M. Apical K+ channels of frog diluting segment: inhibition by acidification. Pflugers Arch. 1989 Oct;415(1):115–117. doi: 10.1007/BF00373148. [DOI] [PubMed] [Google Scholar]
- Kimura M., Gardner J. P., Aviv A. Agonist-evoked alkaline shift in the cytosolic pH set point for activation of Na+/H+ antiport in human platelets. The role of cytosolic Ca2+ and protein kinase C. J Biol Chem. 1990 Dec 5;265(34):21068–21074. [PubMed] [Google Scholar]
- Lang F., Rehwald W. Potassium channels in renal epithelial transport regulation. Physiol Rev. 1992 Jan;72(1):1–32. doi: 10.1152/physrev.1992.72.1.1. [DOI] [PubMed] [Google Scholar]
- Lukacs G. L., Kapus A., Nanda A., Romanek R., Grinstein S. Proton conductance of the plasma membrane: properties, regulation, and functional role. Am J Physiol. 1993 Jul;265(1 Pt 1):C3–14. doi: 10.1152/ajpcell.1993.265.1.C3. [DOI] [PubMed] [Google Scholar]
- Meech R. W., Thomas R. C. Voltage-dependent intracellular pH in Helix aspersa neurones. J Physiol. 1987 Sep;390:433–452. doi: 10.1113/jphysiol.1987.sp016710. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oberleithner H., Kersting U., Silbernagl S., Steigner W., Vogel U. Fusion of cultured dog kidney (MDCK) cells: II. Relationship between cell pH and K+ conductance in response to aldosterone. J Membr Biol. 1989 Oct;111(1):49–56. doi: 10.1007/BF01869208. [DOI] [PubMed] [Google Scholar]
- Oberleithner H., Steigner W., Silbernagl S., Vogel U., Gstraunthaler G., Pfaller W. Madin-Darby canine kidney cells. III. Aldosterone stimulates an apical H+/K+ pump. Pflugers Arch. 1990 Jul;416(5):540–547. doi: 10.1007/BF00382687. [DOI] [PubMed] [Google Scholar]
- Oberleithner H., Weigt M., Westphale H. J., Wang W. Aldosterone activates Na+/H+ exchange and raises cytoplasmic pH in target cells of the amphibian kidney. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1464–1468. doi: 10.1073/pnas.84.5.1464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petzel D., Ganz M. B., Nestler E. J., Lewis J. J., Goldenring J., Akcicek F., Hayslett J. P. Correlates of aldosterone-induced increases in Cai2+ and Isc suggest that Cai2+ is the second messenger for stimulation of apical membrane conductance. J Clin Invest. 1992 Jan;89(1):150–156. doi: 10.1172/JCI115555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
- Valentich J. D. Morphological similarities between the dog kidney cell line MDCK and the mammalian cortical collecting tubule. Ann N Y Acad Sci. 1981;372:384–405. doi: 10.1111/j.1749-6632.1981.tb15490.x. [DOI] [PubMed] [Google Scholar]
- Vilella S., Guerra L., Helmle-Kolb C., Murer H. Aldosterone actions on basolateral Na+/H+ exchange in Madin-Darby canine kidney cells. Pflugers Arch. 1992 Oct;422(1):9–15. doi: 10.1007/BF00381507. [DOI] [PubMed] [Google Scholar]
- Wang W. H., Henderson R. M., Geibel J., White S., Giebisch G. Mechanism of aldosterone-induced increase of K+ conductance in early distal renal tubule cells of the frog. J Membr Biol. 1989 Nov;111(3):277–289. doi: 10.1007/BF01871012. [DOI] [PubMed] [Google Scholar]
- Wehling M., Christ M., Theisen K. Membrane receptors for aldosterone: a novel pathway for mineralocorticoid action. Am J Physiol. 1992 Nov;263(5 Pt 1):E974–E979. doi: 10.1152/ajpendo.1992.263.5.E974. [DOI] [PubMed] [Google Scholar]
- Wehling M., Käsmayr J., Theisen K. Aldosterone influences free intracellular calcium in human mononuclear leukocytes in vitro. Cell Calcium. 1990 Oct;11(9):565–571. doi: 10.1016/0143-4160(90)90010-r. [DOI] [PubMed] [Google Scholar]
- Wehling M. Nongenomic actions of steroid hormones. Trends Endocrinol Metab. 1994 Oct;5(8):347–353. doi: 10.1016/1043-2760(94)90165-1. [DOI] [PubMed] [Google Scholar]
- Weiner I. D., Hamm L. L. Use of fluorescent dye BCECF to measure intracellular pH in cortical collecting tubule. Am J Physiol. 1989 May;256(5 Pt 2):F957–F964. doi: 10.1152/ajprenal.1989.256.5.F957. [DOI] [PubMed] [Google Scholar]
- Wojnowski L., Mason W. T., Schwab A., Oberleithner H. Extracellular pH determines the rate of Ca2+ entry into Madin-Darby canine kidney-focus cells. J Membr Biol. 1994 Mar;138(2):143–149. doi: 10.1007/BF00232642. [DOI] [PubMed] [Google Scholar]
- Wünsch S., Gekle M., Kersting U., Schuricht B., Oberleithner H. Phenotypically and karyotypically distinct Madin-Darby canine kidney cell clones respond differently to alkaline stress. J Cell Physiol. 1995 Jul;164(1):164–171. doi: 10.1002/jcp.1041640121. [DOI] [PubMed] [Google Scholar]