Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Aug;80(16):4884–4888. doi: 10.1073/pnas.80.16.4884

Escherichia coli polymerase I can use O2-methyldeoxythymidine or O4-methyldeoxythymidine in place of deoxythymidine in primed poly(dA-dT).poly(dA-dT) synthesis.

B Singer, J Sági, J T Kuśmierek
PMCID: PMC384151  PMID: 6348776

Abstract

O2-and O4-alkyldeoxythymidine are among the four O-alkyl base-modified derivatives produced by the reaction of N-nitroso alkylating agents with nucleic acids in vitro and in vivo. We find that both O2- and O4-methyl-dTTP can substitute for dTTP in alternating poly(dA-dT)-primed DNA synthesis. Up to 22% of the pyrimidines in the newly synthesized polymer were found by HPLC analysis to be O-methyldeoxythymidine. Little polymer synthesis was observed in the absence of dTTP. However, the O-methyl-dTTPs did not inhibit polymerization of dATP and dTTP. Polymers containing O2- or O4-methyldeoxythymidine were obtained in good yield, retaining the secondary structure of alternating poly(dA-dT). This was shown by the data for thermal transition under different conditions. In contrast, poly(dA-dT).poly(dA-dT) methylated or ethylated to less than 4% total modification by alkylnitrosoureas had a distinctly less stable structure. Neither O2- nor O4-methyldeoxythymidine can form more than one hydrogen bond with adenosine. The unchanged secondary structure of polymers containing these modified thymidines indicates that stacking interactions must play a major role in helix stabilization. O-Alkyldeoxythymidine may be formed by N-nitroso carcinogens that react intracellularly. We have shown that the triphosphates can be utilized by Escherichia coli DNA polymerase I as dTTP. The incorporated O4-methyl-dT causes misincorporation of G, both in transcription and synthesis. When O2-methyl-dT is present, less, but definite, misincorporation results.

Full text

PDF
4884

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott P. J., Mehta J. R., Ludlum D. B. Synthesis of 8-14C-labeled O6-methyldeoxyguanosine and its deoxynucleotide copolymers. Biochemistry. 1980 Feb 19;19(4):643–647. doi: 10.1021/bi00545a006. [DOI] [PubMed] [Google Scholar]
  2. Agarwal S. S., Dube D. K., Loeb L. A. On the fidelity of DNA replication. Accuracy of Escherichia coli DNA polymerase I. J Biol Chem. 1979 Jan 10;254(1):101–106. [PubMed] [Google Scholar]
  3. Brennand J., Saffhill R., Fox M. The effects of methylated thymidines upon cultures of V79 cells and the mechanism of incorporation of O4-methylthymidine into their DNA. Carcinogenesis. 1982;3(2):219–222. doi: 10.1093/carcin/3.2.219. [DOI] [PubMed] [Google Scholar]
  4. Dodson L. A., Foote R. S., Mitra S., Masker W. E. Mutagenesis of bacteriophage T7 in vitro by incorporation of O6-methylguanine during DNA synthesis. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7440–7444. doi: 10.1073/pnas.79.23.7440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gerchman L. L., Ludlum D. B. The properties of O 6 -methylguanine in templates for RNA polymerase. Biochim Biophys Acta. 1973 May 10;308(2):310–316. doi: 10.1016/0005-2787(73)90160-3. [DOI] [PubMed] [Google Scholar]
  6. HOARD D. E., OTT D. G. CONVERSION OF MONO- AND OLIGODEOXYRIBONUCLEOTIDES TO 5-TRIPHOSPHATES. J Am Chem Soc. 1965 Apr 20;87:1785–1788. doi: 10.1021/ja01086a031. [DOI] [PubMed] [Google Scholar]
  7. Jensen D. E. Reaction of DNA with alkylating agents. Differential alkylation of poly[dA-dT[ by methylnitrosourea and ethylnitrosourea. Biochemistry. 1978 Nov 28;17(24):5108–5113. doi: 10.1021/bi00617a006. [DOI] [PubMed] [Google Scholar]
  8. Jensen D. E., Reed D. J. Reaction of DNA with alkylating agents. Quantitation of alkylation by ethylnitrosourea of oxygen and nitrogen sites on poly[dA-dT] including phosphotriester formation. Biochemistry. 1978 Nov 28;17(24):5098–5107. doi: 10.1021/bi00617a005. [DOI] [PubMed] [Google Scholar]
  9. Kröger M., Singer B. Ambiguity and transcriptional errors as a result of methylation of N-1 of purines and N-3 of pyrimidines. Biochemistry. 1979 Aug 7;18(16):3493–3500. doi: 10.1021/bi00583a009. [DOI] [PubMed] [Google Scholar]
  10. Kuśmierek J. T., Singer B. Chloroacetaldehyde-treated ribo- and deoxyribopolynucleotides. 2. Errors in transcription by different polymerases resulting from ethenocytosine and its hydrated intermediate. Biochemistry. 1982 Oct 26;21(22):5723–5728. doi: 10.1021/bi00265a051. [DOI] [PubMed] [Google Scholar]
  11. Kuśmierek J. T., Singer B. Reaction of diazoalkanes with 1-substituted 2, 4-dioxopyrimidines. Formation of O2, N-3 and O4-alkyl products. Nucleic Acids Res. 1976 Apr;3(4):989–1000. doi: 10.1093/nar/3.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Loeb L. A., Kunkel T. A. Fidelity of DNA synthesis. Annu Rev Biochem. 1982;51:429–457. doi: 10.1146/annurev.bi.51.070182.002241. [DOI] [PubMed] [Google Scholar]
  13. McGhee J. D., von Hippel P. H. Formaldehyde as a probe of DNA structure. r. Mechanism of the initial reaction of Formaldehyde with DNA. Biochemistry. 1977 Jul 26;16(15):3276–3293. doi: 10.1021/bi00634a002. [DOI] [PubMed] [Google Scholar]
  14. Mehta J. R., Ludlum D. B. Synthesis and properties of O6-methyldeoxyguanylic acid and its copolymers with deoxycytidylic acid. Biochim Biophys Acta. 1978 Dec 21;521(2):770–778. doi: 10.1016/0005-2787(78)90316-7. [DOI] [PubMed] [Google Scholar]
  15. Müller R., Drosdziok W., Rajewsky M. F. Enzymatic synthesis of double-stranded DNA containing radioactively labeled O(6)-ethylguanine as the only modified base. Carcinogenesis. 1981;2(4):321–327. doi: 10.1093/carcin/2.4.321. [DOI] [PubMed] [Google Scholar]
  16. Müller W., Weber H., Meyer F., Weissmann C. Site-directed mutagenesis in DNA: generation of point mutations in cloned beta globin complementary dna at the positions corresponding to amino acids 121 to 123. J Mol Biol. 1978 Sep 15;124(2):343–358. doi: 10.1016/0022-2836(78)90303-0. [DOI] [PubMed] [Google Scholar]
  17. Nelson J. W., Martin F. H., Tinoco I., Jr DNA and RNA oligomer thermodynamics: the effect of mismatched bases on double-helix stability. Biopolymers. 1981 Dec;20(12):2509–2531. doi: 10.1002/bip.1981.360201204. [DOI] [PubMed] [Google Scholar]
  18. Saffhill R., Fox M. The incorporation of O4-methylthymidine into V79A cell DNA when present in the cell culture medium. Carcinogenesis. 1980 Jun;1(6):487–493. doi: 10.1093/carcin/1.6.487. [DOI] [PubMed] [Google Scholar]
  19. Scherer E., Timmer A. P., Emmelot P. Formation by diethylnitrosamine and persistence of O4-ethylthymidine in rat liver DNA in vivo. Cancer Lett. 1980 Jul;10(1):1–6. doi: 10.1016/0304-3835(80)90058-0. [DOI] [PubMed] [Google Scholar]
  20. Singer B., Fraenkel-Conrat H., Kuśmierek J. T. Preparation and template activities of polynucleotides containing O2- and O4-alkyluridine. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1722–1726. doi: 10.1073/pnas.75.4.1722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Singer B., Kröger M., Carrano M. O2- and O4-alkyl pyrimidine nucleosides: stability of the glycosyl bond and of the alkyl group as a function of pH. Biochemistry. 1978 Apr 4;17(7):1246–1250. doi: 10.1021/bi00600a018. [DOI] [PubMed] [Google Scholar]
  22. Singer B., Kuśmierek J. T., Fraenkel-Conrat H. In vitro discrimination of replicases acting on carcinogen-modified polynucleotide templates. Proc Natl Acad Sci U S A. 1983 Feb;80(4):969–972. doi: 10.1073/pnas.80.4.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Singer B. N-nitroso alkylating agents: formation and persistence of alkyl derivatives in mammalian nucleic acids as contributing factors in carcinogenesis. J Natl Cancer Inst. 1979 Jun;62(6):1329–1339. [PubMed] [Google Scholar]
  24. Singer B., Spengler S., Bodell W. J. Tissue-dependent enzyme-mediated repair or removal of O-ethyl pyrimidines and ethyl purines in carcinogen-treated rats. Carcinogenesis. 1981;2(10):1069–1073. doi: 10.1093/carcin/2.10.1069. [DOI] [PubMed] [Google Scholar]
  25. Spengler S., Singer B. Effect of tautomeric shift on mutation: N4-methoxycytidine forms hydrogen bonds with adenosine in polymers. Biochemistry. 1981 Dec 8;20(25):7290–7294. doi: 10.1021/bi00528a037. [DOI] [PubMed] [Google Scholar]
  26. Sági J. T., Szabolcs A., Szemzö A., Otvös L. Modified polynucleotides. I. Investigation of the enzymatic polymerization of 5-alkyl-dUTP-s. Nucleic Acids Res. 1977 Aug;4(8):2767–2777. doi: 10.1093/nar/4.8.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wells R. D., Larson J. E., Grant R. C., Shortle B. E., Cantor C. R. Physicochemical studies on polydeoxyribonucleotides containing defined repeating nucleotide sequences. J Mol Biol. 1970 Dec 28;54(3):465–497. doi: 10.1016/0022-2836(70)90121-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES