Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Aug;80(16):4919–4921. doi: 10.1073/pnas.80.16.4919

Methylation of replicating and post-replicated mouse L-cell DNA.

Y Gruenbaum, M Szyf, H Cedar, A Razin
PMCID: PMC384158  PMID: 6576364

Abstract

We have introduced [alpha-32P]dGTP into permeabilized cells and measured the degree of methylation at CpG sites by nearest-neighbor analysis. This method reveals a lag of approximately 1 min between DNA synthesis and the modification event. When methylation is inhibited by the addition of S-adenosyl-L-homocysteine in the presence of continued DNA synthesis, the resulting hemimethylated sites are methylated immediately after the release of inhibition. The results suggest that the methylase activity in the cell allows immediate methylation but conditions at the replication fork bring about a short delay in the onset of the modification reaction.

Full text

PDF
4919

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. L. The relationship between synthesis and methylation of DNA in mouse fibroblasts. Biochim Biophys Acta. 1971 Dec 16;254(2):205–212. doi: 10.1016/0005-2787(71)90829-x. [DOI] [PubMed] [Google Scholar]
  2. Bugler B., Bertaux O., Valencia R. Nucleic acids methylation of synchronized BHK 21 HS 5 fibroblasts during the mitotic phase. J Cell Physiol. 1980 Apr;103(1):149–157. doi: 10.1002/jcp.1041030119. [DOI] [PubMed] [Google Scholar]
  3. Burdon R. H., Adams R. L. The in vivo methylation of DNA in mouse fibroblasts. Biochim Biophys Acta. 1969 Jan 21;174(1):322–329. doi: 10.1016/0005-2787(69)90257-3. [DOI] [PubMed] [Google Scholar]
  4. Cox R., Prescott C., Irving C. C. The effect of S-adenosylhomocysteine on DNA methylation in isolated rat liver nuclei. Biochim Biophys Acta. 1977 Feb 16;474(4):493–499. doi: 10.1016/0005-2787(77)90070-3. [DOI] [PubMed] [Google Scholar]
  5. Evans H. H., Evans T. E., Littman S. Methylation of parental and progeny DNA strands in Physarum polycephalum. J Mol Biol. 1973 Mar 15;74(4):563–572. doi: 10.1016/0022-2836(73)90047-8. [DOI] [PubMed] [Google Scholar]
  6. Gruenbaum Y., Cedar H., Razin A. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature. 1982 Feb 18;295(5850):620–622. doi: 10.1038/295620a0. [DOI] [PubMed] [Google Scholar]
  7. Gruenbaum Y., Stein R., Cedar H., Razin A. Methylation of CpG sequences in eukaryotic DNA. FEBS Lett. 1981 Feb 9;124(1):67–71. doi: 10.1016/0014-5793(81)80055-5. [DOI] [PubMed] [Google Scholar]
  8. Hershfield M. S., Kredich N. M. Resistance of an adenosine kinase-deficient human lymphoblastoid cell line to effects of deoxyadenosine on growth, S-adenosylhomocysteine hydrolase inactivation, and dATP accumulation. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4292–4296. doi: 10.1073/pnas.77.7.4292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kantor G. J., Setlow R. B. Rate and extent of DNA repair in nondividing human diploid fibroblasts. Cancer Res. 1981 Mar;41(3):819–825. [PubMed] [Google Scholar]
  10. Kappler J. W. The kinetics of DNA methylation in cultures of a mouse adrenal cell line. J Cell Physiol. 1970 Feb;75(1):21–31. doi: 10.1002/jcp.1040750104. [DOI] [PubMed] [Google Scholar]
  11. Kastan M. B., Gowans B. J., Lieberman M. W. Methylation of deoxycytidine incorporated by excision-repair synthesis of DNA. Cell. 1982 Sep;30(2):509–516. doi: 10.1016/0092-8674(82)90248-3. [DOI] [PubMed] [Google Scholar]
  12. Miller M. R., Castellot J. J., Jr, Pardee A. B. A permeable animal cell preparation for studying macromolecular synthesis. DNA synthesis and the role of deoxyribonucleotides in S phase initiation. Biochemistry. 1978 Mar 21;17(6):1073–1080. doi: 10.1021/bi00599a021. [DOI] [PubMed] [Google Scholar]
  13. Peleg L., Raz E., Ben-Ishai R. Changing capacity for DNA excision repair in mouse embryonic cells in vitro. Exp Cell Res. 1977 Feb;104(2):301–307. doi: 10.1016/0014-4827(77)90095-7. [DOI] [PubMed] [Google Scholar]
  14. Razin A., Riggs A. D. DNA methylation and gene function. Science. 1980 Nov 7;210(4470):604–610. doi: 10.1126/science.6254144. [DOI] [PubMed] [Google Scholar]
  15. Stein R., Gruenbaum Y., Pollack Y., Razin A., Cedar H. Clonal inheritance of the pattern of DNA methylation in mouse cells. Proc Natl Acad Sci U S A. 1982 Jan;79(1):61–65. doi: 10.1073/pnas.79.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weintraub H. Assembly of an active chromatin structure during replication. Nucleic Acids Res. 1979 Oct 10;7(3):781–792. doi: 10.1093/nar/7.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wigler M. H. The inheritance of methylation patterns in vertebrates. Cell. 1981 May;24(2):285–286. doi: 10.1016/0092-8674(81)90317-2. [DOI] [PubMed] [Google Scholar]
  18. Woodcock D. M., Adams J. K., Cooper I. A. Characteristics of enzymatic DNA methylation in cultured cells of human and hamster origin, and the effect of DNA replication inhibition. Biochim Biophys Acta. 1982 Jan 26;696(1):15–22. doi: 10.1016/0167-4781(82)90004-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES