Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Aug;80(16):5002–5006. doi: 10.1073/pnas.80.16.5002

Two-dimensional electrophoresis of plasma polypeptides reveals "high" heterozygosity indices.

B B Rosenblum, J V Neel, S M Hanash
PMCID: PMC384176  PMID: 6576372

Abstract

A series of 62 plasma samples have been examined for genetic variation by the technique of two-dimensional polyacrylamide gel electrophoresis followed by silver-staining of the gels. Twenty polypeptides chosen without respect to variability were considered suitable for scoring. Of the total of 1,240 polypeptides, 29 could not be scored unambiguously. Seventy-five of the remaining 1,211 exhibited the combination of a normal and a variant polypeptide. All variants were present in either the father or the mother of the subject. This index of heterozygosity (6.2 +/- 0.7%) is substantially higher than those reported by others in similar studies of human fibroblasts, lymphocytes, kidney, or brain cells.

Full text

PDF
5002

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L., Anderson N. G. High resolution two-dimensional electrophoresis of human plasma proteins. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5421–5425. doi: 10.1073/pnas.74.12.5421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson N. L., Anderson N. G. Microheterogeneity of serum transferrin, haptoglobin and alpha 2 HS glycoprotein examined by high resolution two-dimensional electrophoresis. Biochem Biophys Res Commun. 1979 May 14;88(1):258–265. doi: 10.1016/0006-291x(79)91724-8. [DOI] [PubMed] [Google Scholar]
  3. Børresen A. L., Berg K. The apoE polymorphism studied by two-dimensional, high-resolution gel electrophoresis of serum. Clin Genet. 1981 Dec;20(6):438–448. doi: 10.1111/j.1399-0004.1981.tb01055.x. [DOI] [PubMed] [Google Scholar]
  4. Comings D. E. Two-dimensional gel electrophoresis of human brain proteins. III. Genetic and non-genetic variations in 145 brains. Clin Chem. 1982 Apr;28(4 Pt 2):798–804. [PubMed] [Google Scholar]
  5. Hamaguchi H., Ohta A., Mukai R., Yabe T., Yamada M. Genetic analysis of human lymphocyte proteins by two-dimensional gel electrophoresis: 1. Detection of genetic variant polypeptides in PHA-stimulated peripheral blood lymphocytes. Hum Genet. 1981;59(3):215–220. doi: 10.1007/BF00283667. [DOI] [PubMed] [Google Scholar]
  6. Hamaguchi H., Yamada M., Noguchi A., Fujii K., Shibasaki M., Mukai R., Yabe T., Kondo I. Genetic analysis of human lymphocyte proteins by two-dimensional gel electrophoresis: 2. Genetic polymorphism of lymphocyte cytosol 64K polypeptide. Hum Genet. 1982;60(2):176–180. doi: 10.1007/BF00569708. [DOI] [PubMed] [Google Scholar]
  7. Hamaguchi H., Yamada M., Shibasaki M., Kondo I. Genetic analysis of human lymphocyte proteins by two-dimensional gel electrophoresis: 4. Genetic polymorphism of cytosol 100k polypeptide. Hum Genet. 1982;62(2):148–151. doi: 10.1007/BF00282304. [DOI] [PubMed] [Google Scholar]
  8. Hamaguchi H., Yamada M., Shibasaki M., Mukai R., Yabe T., Kondo I. Genetic analysis of human lymphocyte proteins by two-dimensional gel electrophoresis: 3. Frequent occurrence of genetic variants in some abundant polypeptides of PHA-stimulated peripheral blood lymphocytes. Hum Genet. 1982;62(2):142–147. doi: 10.1007/BF00282303. [DOI] [PubMed] [Google Scholar]
  9. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik. 1975;26(3):231–243. doi: 10.1007/BF00281458. [DOI] [PubMed] [Google Scholar]
  10. Leavitt J., Goldman D., Merril C., Kakunaga T. Actin mutations in a human fibroblast model for carcinogenesis. Clin Chem. 1982 Apr;28(4 Pt 2):850–860. [PubMed] [Google Scholar]
  11. McConkey E. H., Taylor B. J., Phan D. Human heterozygosity: a new estimate. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6500–6504. doi: 10.1073/pnas.76.12.6500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  13. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  14. Skolnick M. M. An approach to completely automatic comparison of two-dimensional electrophoresis gels. Clin Chem. 1982 Apr;28(4 Pt 2):979–986. [PubMed] [Google Scholar]
  15. Skolnick M. M., Sternberg S. R., Neel J. V. Computer programs for adapting two-dimensional gels to the study of mutation. Clin Chem. 1982 Apr;28(4 Pt 2):969–978. [PubMed] [Google Scholar]
  16. Smith S. C., Racine R. R., Langley C. H. Lack of genic variation in the abundant proteins of human kidney. Genetics. 1980 Dec;96(4):967–974. doi: 10.1093/genetics/96.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tracy R. P., Currie R. M., Young D. S. Two-dimensional gel electrophoresis of serum specimens from a normal population. Clin Chem. 1982 Apr;28(4 Pt 2):890–899. [PubMed] [Google Scholar]
  18. Walton K. E., Styer D., Gruenstein E. I. Genetic polymorphism in normal human fibroblasts as analyzed by two-dimensional polyacrylamide gel electrophoresis. J Biol Chem. 1979 Aug 25;254(16):7951–7960. [PubMed] [Google Scholar]
  19. Wanner L. A., Neel J. V., Meisler M. H. Separation of allelic variants by two-dimensional electrophoresis. Am J Hum Genet. 1982 Mar;34(2):209–215. [PMC free article] [PubMed] [Google Scholar]
  20. Wilson J. M., Baugher B. W., Landa L., Kelley W. N. Human hypoxanthine-guanine phosphoribosyltransferase. Purification and characterization of mutant forms of the enzyme. J Biol Chem. 1981 Oct 25;256(20):10306–10312. [PubMed] [Google Scholar]
  21. Wilson J. M., Tarr G. E., Kelley W. N. Human hypoxanthine (guanine) phosphoribosyltransferase: an amino acid substitution in a mutant form of the enzyme isolated from a patient with gout. Proc Natl Acad Sci U S A. 1983 Feb;80(3):870–873. doi: 10.1073/pnas.80.3.870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
  23. Zannis V. I., Breslow J. L. Human very low density lipoprotein apolipoprotein E isoprotein polymorphism is explained by genetic variation and posttranslational modification. Biochemistry. 1981 Feb 17;20(4):1033–1041. doi: 10.1021/bi00507a059. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES