Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Aug;80(16):5134–5138. doi: 10.1073/pnas.80.16.5134

Modulation of neuronal serotonin uptake by a putative endogenous ligand of imipramine recognition sites.

M L Barbaccia, O Gandolfi, D M Chuang, E Costa
PMCID: PMC384204  PMID: 6308674

Abstract

Imipramine inhibits the serotonin uptake by binding with high affinity to regulatory sites of this uptake located on axons that release serotonin. The number of imipramine recognition sites located on crude synaptic membrane preparations is reduced by two daily injections of imipramine or desmethylimipramine for 3 weeks. When the binding sites for [3H]imipramine are down-regulated the Vmax of the neuronal uptake of serotonin is increased. Moreover, in minces prepared from the brain hippocampus of rats receiving imipramine in a dose regimen that reduces the number of [3H]imipramine recognition sites, the efficiency of imipramine as a blocker of the serotonin uptake is diminished. Hence the high-affinity binding sites for [3H]imipramine may have a physiological role in modulation of serotonin reuptake. Probably this is mediated by an endogenous effector of these regulatory sites. A nonpeptidic constituent of rat brain capable of displacing [3H]imipramine from its high-affinity binding site and of inhibiting the serotonin uptake in a dose-related manner has been extracted and its partial purification is described.

Full text

PDF
5134

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahtee L., Briley M., Raisman R., Lebrec D., Langer S. Z. Reduced uptake of serotonin but unchanged 3H-imipramine binding in the platelets from cirrhotic patients. Life Sci. 1981 Nov 30;29(22):2323–2329. doi: 10.1016/0024-3205(81)90566-x. [DOI] [PubMed] [Google Scholar]
  2. Banerjee S. P., Kung L. S., Riggi S. J., Chanda S. K. Development of beta-adrenergic receptor subsensitivity by antidepressants. Nature. 1977 Aug 4;268(5619):455–456. doi: 10.1038/268455a0. [DOI] [PubMed] [Google Scholar]
  3. Barbaccia M. L., Brunello N., Chuang D. M., Costa E. On the mode of action of imipramine: relationship between serotonergic axon terminal function and down-regulation of beta-adrenergic receptors. Neuropharmacology. 1983 Mar;22(3 Spec No):373–383. doi: 10.1016/0028-3908(83)90186-7. [DOI] [PubMed] [Google Scholar]
  4. Baumann P. A., Maître L. Blockade of presynaptic alpha-receptors and of amine uptake in the rat brain by the antidepressant mianserine. Naunyn Schmiedebergs Arch Pharmacol. 1977 Oct;300(1):31–37. doi: 10.1007/BF00505077. [DOI] [PubMed] [Google Scholar]
  5. Briley M., Raisman R., Arbilla S., Casadamont M., Langer S. Z. Concomitant decrease in [3H]imipramine binding in cat brain and platelets after chronic treatment with imipramine. Eur J Pharmacol. 1982 Jul 9;81(2):309–314. doi: 10.1016/0014-2999(82)90449-6. [DOI] [PubMed] [Google Scholar]
  6. Brunello N., Barbaccia M. L., Chuang D. M., Costa E. Down-regulation of beta-adrenergic receptors following repeated injections of desmethylimipramine: permissive role of serotonergic axons. Neuropharmacology. 1982 Nov;21(11):1145–1149. doi: 10.1016/0028-3908(82)90172-1. [DOI] [PubMed] [Google Scholar]
  7. Brunello N., Chuang D. M., Costa E. Different synaptic location of mianserin and imipramine binding sites. Science. 1982 Feb 26;215(4536):1112–1115. doi: 10.1126/science.6278586. [DOI] [PubMed] [Google Scholar]
  8. Gross G., Göthert M., Ender H. P., Schümann H. J. 3H-Imipramine binding sites in the rat brain. Selective localization on serotoninergic neurones. Naunyn Schmiedebergs Arch Pharmacol. 1981;317(4):310–314. doi: 10.1007/BF00501311. [DOI] [PubMed] [Google Scholar]
  9. Janowsky A., Okada F., Manier D. H., Applegate C. D., Sulser F., Steranka L. R. Role of serotonergic input in the regulation of the beta-adrenergic receptor-coupled adenylate cyclase system. Science. 1982 Nov 26;218(4575):900–901. doi: 10.1126/science.6291152. [DOI] [PubMed] [Google Scholar]
  10. KUHN R. The treatment of depressive states with G 22355 (imipramine hydrochloride). Am J Psychiatry. 1958 Nov;115(5):459–464. doi: 10.1176/ajp.115.5.459. [DOI] [PubMed] [Google Scholar]
  11. Kinnier W. J., Chuang D. M., Costa E. Down regulation of dihydroalprenolol and imipramine binding sites in brain of rats repeatedly treated with imipramine. Eur J Pharmacol. 1980 Oct 17;67(2-3):289–294. doi: 10.1016/0014-2999(80)90510-5. [DOI] [PubMed] [Google Scholar]
  12. Kinnier W. J., Chuang D. M., Gwynn G., Costa E. Characteristics and regulation of high affinity [3H] imipramine binding to rat hippocampal membranes. Neuropharmacology. 1981 May;20(5):411–419. doi: 10.1016/0028-3908(81)90170-2. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lacković Z., Parenti M., Neff N. H. Simultaneous determination of femtomole quantities of 5-hydroxytryptophan, serotonin and 5-hydroxyindoleacetic acid in brain using HPLC with electrochemical detection. Eur J Pharmacol. 1981 Jan 29;69(3):347–352. doi: 10.1016/0014-2999(81)90481-7. [DOI] [PubMed] [Google Scholar]
  15. Langer S. Z., Moret C., Raisman R., Dubocovich M. L., Briley M. High-affinity [3H]imipramine binding in rat hypothalamus: association with uptake of serotonin but not of norepinephrine. Science. 1980 Dec 5;210(4474):1133–1135. doi: 10.1126/science.7444441. [DOI] [PubMed] [Google Scholar]
  16. Langer S. Z., Raisman R., Briley M. S. Stereoselective inhibition of 3H-imipramine binding by antidepressant drugs and their derivatives. Eur J Pharmacol. 1980 May 30;64(1):89–90. doi: 10.1016/0014-2999(80)90373-8. [DOI] [PubMed] [Google Scholar]
  17. Langer S. Z., Raisman R., Briley M. High-affinity [3H] DMI binding is associated with neuronal noradrenaline uptake in the periphery and the central nervous system. Eur J Pharmacol. 1981 Jul 10;72(4):423–424. doi: 10.1016/0014-2999(81)90592-6. [DOI] [PubMed] [Google Scholar]
  18. Lee C. M., Snyder S. H. Norepinephrine neuronal uptake binding sites in rat brain membranes labeled with [3H]desipramine. Proc Natl Acad Sci U S A. 1981 Aug;78(8):5250–5254. doi: 10.1073/pnas.78.8.5250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Paul S. M., Rehavi M., Rice K. C., Ittah Y., Skolnick P. Does high affinity [3H] imipramine binding label serotonin reuptake sites in brain and platelet? Life Sci. 1981 Jun 15;28(24):2753–2760. doi: 10.1016/0024-3205(81)90177-6. [DOI] [PubMed] [Google Scholar]
  20. Raisman R., Briley M., Langer S. Z. Specific tricyclic antidepressant binding sites in rat brain. Nature. 1979 Sep 13;281(5727):148–150. doi: 10.1038/281148a0. [DOI] [PubMed] [Google Scholar]
  21. Rehavi M., Skolnick P., Hulihan B., Paul S. M. 'High affinity' binding of [3H]desipramine to rat cerebral cortex: relationship to tricyclic antidepressant-induced inhibition of norepinephrine uptake. Eur J Pharmacol. 1981 Apr 9;70(4):597–599. doi: 10.1016/0014-2999(81)90376-9. [DOI] [PubMed] [Google Scholar]
  22. Rudnick G. Active transport of 5-hydroxytryptamine by plasma membrane vesicles isolated from human blood platelets. J Biol Chem. 1977 Apr 10;252(7):2170–2174. [PubMed] [Google Scholar]
  23. Saiani L., Guidotti A. Opiate receptor-mediated inhibition of catecholamine release in primary cultures of bovine adrenal chromaffin cells. J Neurochem. 1982 Dec;39(6):1669–1676. doi: 10.1111/j.1471-4159.1982.tb08001.x. [DOI] [PubMed] [Google Scholar]
  24. Sarai K., Frazer A., Brunswick D., Mendels J. Desmethylimipramine-induced decrease in beta-adrenergic receptor binding in rat cerebral cortex. Biochem Pharmacol. 1978;27(17):2179–2181. doi: 10.1016/0006-2952(78)90293-9. [DOI] [PubMed] [Google Scholar]
  25. Sette M., Briley M. S., Langer S. Z. Complex inhibition of [3H]imipramine binding by serotonin and nontricyclic serotonin uptake blockers. J Neurochem. 1983 Mar;40(3):622–628. doi: 10.1111/j.1471-4159.1983.tb08026.x. [DOI] [PubMed] [Google Scholar]
  26. Sette M., Raisman R., Briley M., Langer S. Z. Localisation of tricyclic antidepressant binding sites on serotonin nerve terminals. J Neurochem. 1981 Jul;37(1):40–42. doi: 10.1111/j.1471-4159.1981.tb05288.x. [DOI] [PubMed] [Google Scholar]
  27. Shaskan E. G., Snyder S. H. Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J Pharmacol Exp Ther. 1970 Nov;175(2):404–418. [PubMed] [Google Scholar]
  28. Sulser F., Vetulani J., Mobley P. L. Mode of action of antidepressant drugs. Biochem Pharmacol. 1978 Feb 1;27(3):257–261. doi: 10.1016/0006-2952(78)90226-5. [DOI] [PubMed] [Google Scholar]
  29. Talvenheimo J., Nelson P. J., Rudnick G. Mechanism of imipramine inhibition of platelet 5-hydroxytryptamine transport. J Biol Chem. 1979 Jun 10;254(11):4631–4635. [PubMed] [Google Scholar]
  30. Vetulani J., Sulser F. Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP-generating system in limbic forebrain. Nature. 1975 Oct 9;257(5526):495–496. doi: 10.1038/257495a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES