Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Sep 17;93(19):10533–10537. doi: 10.1073/pnas.93.19.10533

Mnemonic neuronal activity in somatosensory cortex.

Y D Zhou 1, J M Fuster 1
PMCID: PMC38421  PMID: 8927629

Abstract

Single-unit activity was recorded from the hand areas of the somatosensory cortex of monkeys trained to perform a haptic delayed matching to sample task with objects of identical dimensions but different surface features. During the memory retention period of the task (delay), many units showed sustained firing frequency change, either excitation or inhibition. In some cases, firing during that period was significantly higher after one sample object than after another. These observations indicate the participation of somatosensory neurons not only in the perception but in the short-term memory of tactile stimuli. Neurons most directly implicated in tactile memory are (i) those with object-selective delay activity, (ii) those with nondifferential delay activity but without activity related to preparation for movement, and (iii) those with delay activity in the haptic-haptic delayed matching task but no such activity in a control visuo-haptic delayed matching task. The results indicate that cells in early stages of cortical somatosensory processing participate in haptic short-term memory.

Full text

PDF
10533

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbas H., Mesulam M. M. Cortical afferent input to the principalis region of the rhesus monkey. Neuroscience. 1985 Jul;15(3):619–637. doi: 10.1016/0306-4522(85)90064-8. [DOI] [PubMed] [Google Scholar]
  2. Funahashi S., Bruce C. J., Goldman-Rakic P. S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J Neurophysiol. 1989 Feb;61(2):331–349. doi: 10.1152/jn.1989.61.2.331. [DOI] [PubMed] [Google Scholar]
  3. Fuster J. M., Alexander G. E. Neuron activity related to short-term memory. Science. 1971 Aug 13;173(3997):652–654. doi: 10.1126/science.173.3997.652. [DOI] [PubMed] [Google Scholar]
  4. Fuster J. M. Inferotemporal units in selective visual attention and short-term memory. J Neurophysiol. 1990 Sep;64(3):681–697. doi: 10.1152/jn.1990.64.3.681. [DOI] [PubMed] [Google Scholar]
  5. Fuster J. M., Jervey J. P. Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science. 1981 May 22;212(4497):952–955. doi: 10.1126/science.7233192. [DOI] [PubMed] [Google Scholar]
  6. Fuster J. M., Jervey J. P. Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J Neurosci. 1982 Mar;2(3):361–375. doi: 10.1523/JNEUROSCI.02-03-00361.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fuster J. M. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol. 1973 Jan;36(1):61–78. doi: 10.1152/jn.1973.36.1.61. [DOI] [PubMed] [Google Scholar]
  8. Garraghty P. E., Kaas J. H. Dynamic features of sensory and motor maps. Curr Opin Neurobiol. 1992 Aug;2(4):522–527. doi: 10.1016/0959-4388(92)90191-m. [DOI] [PubMed] [Google Scholar]
  9. Jiang W., Chapman C. E., Lamarre Y. Modulation of the cutaneous responsiveness of neurones in the primary somatosensory cortex during conditioned arm movements in the monkey. Exp Brain Res. 1991;84(2):342–354. doi: 10.1007/BF00231455. [DOI] [PubMed] [Google Scholar]
  10. Kaas J. H., Merzenich M. M., Killackey H. P. The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci. 1983;6:325–356. doi: 10.1146/annurev.ne.06.030183.001545. [DOI] [PubMed] [Google Scholar]
  11. Kaas J. H. Plasticity of sensory and motor maps in adult mammals. Annu Rev Neurosci. 1991;14:137–167. doi: 10.1146/annurev.ne.14.030191.001033. [DOI] [PubMed] [Google Scholar]
  12. Kaas J. H. The evolution of isocortex. Brain Behav Evol. 1995;46(4-5):187–196. doi: 10.1159/000113273. [DOI] [PubMed] [Google Scholar]
  13. Kaas J. H. What, if anything, is SI? Organization of first somatosensory area of cortex. Physiol Rev. 1983 Jan;63(1):206–231. doi: 10.1152/physrev.1983.63.1.206. [DOI] [PubMed] [Google Scholar]
  14. Koch K. W., Fuster J. M. Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Exp Brain Res. 1989;76(2):292–306. doi: 10.1007/BF00247889. [DOI] [PubMed] [Google Scholar]
  15. Kosslyn S. M., Thompson W. L., Kim I. J., Alpert N. M. Topographical representations of mental images in primary visual cortex. Nature. 1995 Nov 30;378(6556):496–498. doi: 10.1038/378496a0. [DOI] [PubMed] [Google Scholar]
  16. Le Bihan D., Turner R., Zeffiro T. A., Cuénod C. A., Jezzard P., Bonnerot V. Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11802–11805. doi: 10.1073/pnas.90.24.11802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lebedev M. A., Denton J. M., Nelson R. J. Vibration-entrained and premovement activity in monkey primary somatosensory cortex. J Neurophysiol. 1994 Oct;72(4):1654–1673. doi: 10.1152/jn.1994.72.4.1654. [DOI] [PubMed] [Google Scholar]
  18. Matthews P. B. Proprioceptors and their contribution to somatosensory mapping: complex messages require complex processing. Can J Physiol Pharmacol. 1988 Apr;66(4):430–438. doi: 10.1139/y88-073. [DOI] [PubMed] [Google Scholar]
  19. Maunsell J. H., Sclar G., Nealey T. A., DePriest D. D. Extraretinal representations in area V4 in the macaque monkey. Vis Neurosci. 1991 Dec;7(6):561–573. doi: 10.1017/s095252380001035x. [DOI] [PubMed] [Google Scholar]
  20. Miles F. A., Evarts E. V. Concepts of motor organization. Annu Rev Psychol. 1979;30:327–362. doi: 10.1146/annurev.ps.30.020179.001551. [DOI] [PubMed] [Google Scholar]
  21. Miyashita Y., Chang H. S. Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature. 1988 Jan 7;331(6151):68–70. doi: 10.1038/331068a0. [DOI] [PubMed] [Google Scholar]
  22. Nelson R. J., Douglas V. D. Changes in premovement activity in primary somatosensory cortex differ when monkeys make hand movements in response to visual vs vibratory cues. Brain Res. 1989 Apr 10;484(1-2):43–56. doi: 10.1016/0006-8993(89)90346-6. [DOI] [PubMed] [Google Scholar]
  23. Nelson R. J. Set related and premovement related activity of primate primary somatosensory cortical neurons depends upon stimulus modality and subsequent movement. Brain Res Bull. 1988 Sep;21(3):411–424. doi: 10.1016/0361-9230(88)90153-0. [DOI] [PubMed] [Google Scholar]
  24. Nelson R. J., Smith B. N., Douglas V. D. Relationships between sensory responsiveness and premovement activity of quickly adapting neurons in areas 3b and 1 of monkey primary somatosensory cortex. Exp Brain Res. 1991;84(1):75–90. doi: 10.1007/BF00231763. [DOI] [PubMed] [Google Scholar]
  25. Niki H. Differential activity of prefrontal units during right and left delayed response trials. Brain Res. 1974 Apr 19;70(2):346–349. doi: 10.1016/0006-8993(74)90324-2. [DOI] [PubMed] [Google Scholar]
  26. Pons T. P., Garraghty P. E., Ommaya A. K., Kaas J. H., Taub E., Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science. 1991 Jun 28;252(5014):1857–1860. doi: 10.1126/science.1843843. [DOI] [PubMed] [Google Scholar]
  27. Roland P. E. Somatotopical tuning of postcentral gyrus during focal attention in man. A regional cerebral blood flow study. J Neurophysiol. 1981 Oct;46(4):744–754. doi: 10.1152/jn.1981.46.4.744. [DOI] [PubMed] [Google Scholar]
  28. Shindy W. W., Posley K. A., Fuster J. M. Reversible deficit in haptic delay tasks from cooling prefrontal cortex. Cereb Cortex. 1994 Jul-Aug;4(4):443–450. doi: 10.1093/cercor/4.4.443. [DOI] [PubMed] [Google Scholar]
  29. Zipser D., Kehoe B., Littlewort G., Fuster J. A spiking network model of short-term active memory. J Neurosci. 1993 Aug;13(8):3406–3420. doi: 10.1523/JNEUROSCI.13-08-03406.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES