Abstract
The situation under which substrate cooperativity is apparent only in the presence of an inhibitor has been investigated. When a substrate and an inhibitor bind independently to a cooperative enzyme that conforms to the concerted Monod-Wyman-Changeux model, each of the two ligands must induce intersubunit transitions in the protein molecule in order to have their allosteric effects coupled to one another. The inhibitor exerts a heterotropic influence on the saturation function of the substrate and enhances the otherwise recondite homotropic effect of the latter. If the ligands bind competitively to the enzyme, however, intersubunit transitions in the enzyme need be induced only by the inhibitor. A sigmoidal substrate saturation curve is then obtained as a result of displacement of the inhibitor from the enzyme by the substrate. In this mechanism, the competitive inhibitor participates as a cofactor required for the expression of substrate cooperativity and the familiar ability of regulatory enzymes to mediate homotropic interactions directly between substrate molecules is absent. Experimental tests are proposed to elucidate the nature of cooperative interactions for enzymes that appear to retain heterotropic but not homotropic effects in substrate binding.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Gigot D., Glansdorff N., Legrain C., Piérard A., Stalon V., Konigsberg W., Caplier I., Strosberg A. D., Hervé G. Comparison of the N-terminal sequences of aspartate and ornithine carbamoyltransferases of Escherichia coli. FEBS Lett. 1977 Sep 1;81(1):28–32. doi: 10.1016/0014-5793(77)80920-4. [DOI] [PubMed] [Google Scholar]
- Hensley P., Yang Y. R., Schachman H. K. On the detection of homotropic effects in enzymes of low co-operativity. Application to modified aspartate transcarbamoylase. J Mol Biol. 1981 Oct 15;152(1):131–152. doi: 10.1016/0022-2836(81)90098-x. [DOI] [PubMed] [Google Scholar]
- Jenkins J. A., Johnson L. N., Stuart D. I., Stura E. A., Wilson K. S., Zanotti G. Phosphorylase: control and activity. Philos Trans R Soc Lond B Biol Sci. 1981 Jun 26;293(1063):23–41. doi: 10.1098/rstb.1981.0057. [DOI] [PubMed] [Google Scholar]
- Kirtley M. E., Koshland D. E., Jr Models for cooperative effects in proteins containing subunits. Effects of two interacting ligands. J Biol Chem. 1967 Sep 25;242(18):4192–4205. [PubMed] [Google Scholar]
- Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
- Kuo L. C., Lipscomb W. N., Kantrowitz E. R. Zn(II)-induced cooperativity of Escherichia coli ornithine transcarbamoylase. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2250–2254. doi: 10.1073/pnas.79.7.2250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Legrain C., Stalon V., Noullez J. P., Mercenier A., Simon J. P., Broman K., Wiame J. M. Structure and function of ornithine carbamoyltransferases. Eur J Biochem. 1977 Nov 1;80(2):401–409. doi: 10.1111/j.1432-1033.1977.tb11895.x. [DOI] [PubMed] [Google Scholar]
- Legrain C., Stalon V. Ornithine carbamoyltransferase from Escherichia coli W. Purification, structure and steady-state kinetic analysis. Eur J Biochem. 1976 Mar 16;63(1):289–301. doi: 10.1111/j.1432-1033.1976.tb10230.x. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Madsen N. B., Shechosky S. Allosteric properties of phosphorylase b. II. Comparison with a kinetic model. J Biol Chem. 1967 Jul 25;242(14):3301–3307. [PubMed] [Google Scholar]
- Neet K. E. Cooperativity in enzyme function: equilibrium and kinetic aspects. Methods Enzymol. 1980;64:139–192. doi: 10.1016/s0076-6879(80)64009-9. [DOI] [PubMed] [Google Scholar]
- Rubin M. M., Changeux J. P. On the nature of allosteric transitions: implications of non-exclusive ligand binding. J Mol Biol. 1966 Nov 14;21(2):265–274. doi: 10.1016/0022-2836(66)90097-0. [DOI] [PubMed] [Google Scholar]
- Smith G. D., Roberts D. V., Kuchel P. W. Active site directed effectors of allosteric enzymes. Biochim Biophys Acta. 1975 Jan 23;377(1):197–202. doi: 10.1016/0005-2744(75)90300-9. [DOI] [PubMed] [Google Scholar]
- Weber K. New structural model of E. coli aspartate transcarbamylase and the amino-acid sequence of the regulatory polypeptide chain. Nature. 1968 Jun 22;218(5147):1116–1119. doi: 10.1038/2181116a0. [DOI] [PubMed] [Google Scholar]
- Wiley D. C., Lipscomb W. N. Crystallographic determination of symmetry of aspartate transcarbamylase. Nature. 1968 Jun 22;218(5147):1119–1121. doi: 10.1038/2181119a0. [DOI] [PubMed] [Google Scholar]
