Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Sep;80(17):5276–5280. doi: 10.1073/pnas.80.17.5276

Phosphorylation of human growth hormone by the epidermal growth factor-stimulated tyrosine kinase.

G S Baldwin, B Grego, M T Hearn, J A Knesel, F J Morgan, R J Simpson
PMCID: PMC384236  PMID: 6604272

Abstract

In the present study, we have demonstrated that human growth hormone (hGH) can be phosphorylated by the epidermal growth factor (EGF)-stimulated tyrosine kinase of A431 cell membranes. Phosphotyrosine was the predominant phosphoamino acid released from phosphorylated hGH on partial acid hydrolysis. All five tyrosine-containing tryptic peptides of hGH are also phosphorylated by the EGF-stimulated tyrosine kinase. The highest phosphate incorporation was found for peptide T4 (residues 20-38), which is distinguished by a high frequency of acidic amino acids. The phosphorylated peptides have been characterized by HPLC and two-dimensional mapping on paper. Comparison with the labeled peptides obtained on tryptic digestion of phosphorylated hGH suggests that tyrosine phosphorylation is restricted to two tryptic peptides, T4 (tyrosine-28 or -35) and T6 (tyrosine-42). It is suggested that the absence of early insulin-like activity in the naturally occurring Mr 20,000 variant of hGH, which has an internal deletion spanning residues 32-46, may be a consequence of the loss of the tyrosine phosphorylation sites at residues 35 and 42.

Full text

PDF
5276

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin G. S., Knesel J., Monckton J. M. Phosphorylation of gastrin-17 by epidermal growth factor-stimulated tyrosine kinase. Nature. 1983 Feb 3;301(5899):435–437. doi: 10.1038/301435a0. [DOI] [PubMed] [Google Scholar]
  2. Brautigan D. L., Bornstein P., Gallis B. Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn. J Biol Chem. 1981 Jul 10;256(13):6519–6522. [PubMed] [Google Scholar]
  3. Burgess A. W., Knesel J., Sparrow L. G., Nicola N. A., Nice E. C. Two forms of murine epidermal growth factor: rapid separation by using reverse-phase HPLC. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5753–5757. doi: 10.1073/pnas.79.19.5753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carpenter G., King L., Jr, Cohen S. Rapid enhancement of protein phosphorylation in A-431 cell membrane preparations by epidermal growth factor. J Biol Chem. 1979 Jun 10;254(11):4884–4891. [PubMed] [Google Scholar]
  5. Cassel D., Glaser L. Proteolytic cleavage of epidermal growth factor receptor. A Ca2+-dependent, sulfhydryl-sensitive proteolytic system in A431 cells. J Biol Chem. 1982 Aug 25;257(16):9845–9848. [PubMed] [Google Scholar]
  6. Chapman G. E., Rogers K. M., Brittain T., Bradshaw R. A., Bates O. J., Turner C., Cary P. D., Crane-Robinson C. The 20,000 molecular weight variant of human growth hormone. Preparation and some physical and chemical properties. J Biol Chem. 1981 Mar 10;256(5):2395–2401. [PubMed] [Google Scholar]
  7. Choudhury A. M., Kenner G. W., Moore S., Ramachandran K. L., Thorpe W. D., Ramage R., Dockray G. J., Gregory R. A., Hood L., Hunkapiller M. N-Terminal sequence of human big gastrin: sequence, synthetic and immunochemical studies. Hoppe Seylers Z Physiol Chem. 1980 Nov;361(11):1719–1733. doi: 10.1515/bchm2.1980.361.2.1719. [DOI] [PubMed] [Google Scholar]
  8. Cohen S., Carpenter G., King L., Jr Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J Biol Chem. 1980 May 25;255(10):4834–4842. [PubMed] [Google Scholar]
  9. Cooper J. A., Bowen-Pope D. F., Raines E., Ross R., Hunter T. Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cell. 1982 Nov;31(1):263–273. doi: 10.1016/0092-8674(82)90426-3. [DOI] [PubMed] [Google Scholar]
  10. Czernilofsky A. P., Levinson A. D., Varmus H. E., Bishop J. M., Tischer E., Goodman H. M. Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product. Nature. 1980 Sep 18;287(5779):198–203. doi: 10.1038/287198a0. [DOI] [PubMed] [Google Scholar]
  11. Friedmann T., Esty A., LaPorte P., Deininger P. The nucleotide sequence and genome organization of the polyoma early region: extensive nucleotide and amino acid homology with SV40. Cell. 1979 Jul;17(3):715–724. doi: 10.1016/0092-8674(79)90278-2. [DOI] [PubMed] [Google Scholar]
  12. Frigeri L. G., Peterson S. M., Lewis U. J. The 20,000-dalton structural variant of human growth hormone: lack of some early insulin-like effects. Biochem Biophys Res Commun. 1979 Dec 14;91(3):778–782. doi: 10.1016/0006-291x(79)91947-8. [DOI] [PubMed] [Google Scholar]
  13. Goodman H. M. Antilipolytic effects of growth hormone. Metabolism. 1970 Oct;19(10):849–855. doi: 10.1016/0026-0495(70)90082-x. [DOI] [PubMed] [Google Scholar]
  14. Grego B., Lambrou F., Hearn M. T. High-performance liquid chromatography of amino acids, peptides and proteins. XLVIII. Retention behaviour of tryptic peptides of human growth hormone isolated by reversed-phase high-performance liquid chromatography: a comparative study using different chromatographic conditions and predicted elution behaviour based on retention coefficients. J Chromatogr. 1983 Aug 26;266:89–103. doi: 10.1016/s0021-9673(01)90882-9. [DOI] [PubMed] [Google Scholar]
  15. Hunter T., Sefton B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1311–1315. doi: 10.1073/pnas.77.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kasuga M., Zick Y., Blithe D. L., Crettaz M., Kahn C. R. Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature. 1982 Aug 12;298(5875):667–669. doi: 10.1038/298667a0. [DOI] [PubMed] [Google Scholar]
  17. Kawauchi H., Li C. H. Reaction of human chorionic somatomammotropin and human pituitary growth hormone with tetranitromethane at 0 degrees C. Arch Biochem Biophys. 1974 Nov;165(1):255–262. doi: 10.1016/0003-9861(74)90162-3. [DOI] [PubMed] [Google Scholar]
  18. Kemp B. E., Benjamini E., Krebs E. G. Synthetic hexapeptide substrates and inhibitors of 3':5'-cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1038–1042. doi: 10.1073/pnas.73.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lewis U. J., Bonewald L. F., Lewis L. J. The 20,000-dalton variant of human growth hormone: location of the amino acid deletions. Biochem Biophys Res Commun. 1980 Jan 29;92(2):511–516. doi: 10.1016/0006-291x(80)90363-0. [DOI] [PubMed] [Google Scholar]
  20. Lewis U. J., Dunn J. T., Bonewald L. F., Seavey B. K., Vanderlaan W. P. A naturally occurring structural variant of human growth hormone. J Biol Chem. 1978 Apr 25;253(8):2679–2687. [PubMed] [Google Scholar]
  21. Lewis U. J., Singh R. N., Tutwiler G. F., Sigel M. B., VanderLaan E. F., VanderLaan W. P. Human growth hormone: a complex of proteins. Recent Prog Horm Res. 1980;36:477–508. doi: 10.1016/b978-0-12-571136-4.50019-x. [DOI] [PubMed] [Google Scholar]
  22. Niall H. D., Hogan M. L., Sauer R., Rosenblum I. Y., Greenwood F. C. Sequences of pituitary and placental lactogenic and growth hormones: evolution from a primordial peptide by gene reduplication. Proc Natl Acad Sci U S A. 1971 Apr;68(4):866–870. doi: 10.1073/pnas.68.4.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nishimura J., Huang J. S., Deuel T. F. Platelet-derived growth factor stimulates tyrosine-specific protein kinase activity in Swiss mouse 3T3 cell membranes. Proc Natl Acad Sci U S A. 1982 Jul;79(14):4303–4307. doi: 10.1073/pnas.79.14.4303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Simpson R. J., Begg G. S., Dorow D. S., Morgan F. J. Complete amino acid sequence of the goose-type lysozyme from the egg white of the black swan. Biochemistry. 1980 Apr 29;19(9):1814–1819. doi: 10.1021/bi00550a013. [DOI] [PubMed] [Google Scholar]
  25. Singh R. N., Seavey B. K., Lewis U. J. Heterogeneity of human growth hormone. Endocr Res Commun. 1974;1(5-6):449–464. doi: 10.3109/07435807409089000. [DOI] [PubMed] [Google Scholar]
  26. Smart J. E., Oppermann H., Czernilofsky A. P., Purchio A. F., Erikson R. L., Bishop J. M. Characterization of sites for tyrosine phosphorylation in the transforming protein of Rous sarcoma virus (pp60v-src) and its normal cellular homologue (pp60c-src). Proc Natl Acad Sci U S A. 1981 Oct;78(10):6013–6017. doi: 10.1073/pnas.78.10.6013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Soeda E., Arrand J. R., Smolar N., Griffin B. E. Sequence from early region of polyoma virus DNA containing viral replication origin and encoding small, middle and (part of) large T antigens. Cell. 1979 Jun;17(2):357–370. doi: 10.1016/0092-8674(79)90162-4. [DOI] [PubMed] [Google Scholar]
  28. Witte O. N., Rosenberg N., Paskind M., Shields A., Baltimore D. Identification of an Abelson murine leukemia virus-encoded protein present in transformed fibroblast and lymphoid cells. Proc Natl Acad Sci U S A. 1978 May;75(5):2488–2492. doi: 10.1073/pnas.75.5.2488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wong T. W., Goldberg A. R. In vitro phosphorylation of angiotensin analogs by tyrosyl protein kinases. J Biol Chem. 1983 Jan 25;258(2):1022–1025. [PubMed] [Google Scholar]
  30. Yudaev N. A., Pankov YuA, Keda YuM, Sazina E. T., Osipova T. A., Shwachkin YuP, Ryabtsev M. N. The effect of synthetic fragment 31-44 of human growth hormone on glucose uptake by isolated adipose tissue. Biochem Biophys Res Commun. 1983 Feb 10;110(3):866–872. doi: 10.1016/0006-291x(83)91041-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES