Abstract
We report the detection of electrostatic interactions between local anesthetics and membrane phospholipids and proteins. A spin-labeled local anesthetic was used to study how membrane-bound tertiary amine anesthetics interact with major molecular components in the membrane. The nitroxyl reporter group of this spin label is located at the polar end of the amphiphilic local anesthetic; it is therefore a uniquely suitable probe for detecting immobilization of the anesthetic due to binding interactions at the polar regions of the bilayer. The binding properties of this spin-labeled anesthetic to human erythrocyte membranes and to vesicles made from human erythrocyte lipids were studied. Lipid vesicle-bound spin labels give rise to a composite electron spin resonance spectrum from which two subcomponent spectra were resolved. Both components are membrane-bound; the first component has a narrower linewidth, indicating a greater mobility of the nitroxyl moiety of the anesthetic probe. The second component has a broader linewidth, indicating a population of constrained spin labels. We infer from the experimental results that electrostatic binding between cationic anesthetics and anionic phosphate of phospholipids produced the constrained component. In similar studies using erythrocyte ghost membranes, both a mobile (nonelectrostatic) component and a constrained (electrostatic) component were resolved from the composite spectrum. However, the constrained component in this case is much broader than the corresponding constrained component from the vesicles. We interpret this broad component in the erythrocyte membrane as an electrostatic interaction of cationic anesthetic probes with phospholipids and with membrane proteins. We conclude that membrane-bound tertiary amine anesthetics in cationic form do interact selectively with phospholipids and proteins.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams P. R. Voltage jump analysis of procaine action at frog end-plate. J Physiol. 1977 Jun;268(2):291–318. doi: 10.1113/jphysiol.1977.sp011858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bond G. H., Hudgins P. M. Inhibition of ATPase activity in human red cell membranes by tetracaine. Biochem Pharmacol. 1976 Feb 1;25(3):267–270. doi: 10.1016/0006-2952(76)90212-4. [DOI] [PubMed] [Google Scholar]
- Brotherus J. R., Jost P. C., Griffith O. H., Keana J. F., Hokin L. E. Charge selectivity at the lipid-protein interface of membranous Na,K-ATPase. Proc Natl Acad Sci U S A. 1980 Jan;77(1):272–276. doi: 10.1073/pnas.77.1.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cafiso D. S., Hubbell W. L. EPR determination of membrane potentials. Annu Rev Biophys Bioeng. 1981;10:217–244. doi: 10.1146/annurev.bb.10.060181.001245. [DOI] [PubMed] [Google Scholar]
- Conti-Tronconi B. M., Raftery M. A. The nicotinic cholinergic receptor: correlation of molecular structure with functional properties. Annu Rev Biochem. 1982;51:491–530. doi: 10.1146/annurev.bi.51.070182.002423. [DOI] [PubMed] [Google Scholar]
- Coster H. G., James V. J., Berthet C., Miller A. Location and effect of procaine on lecithin/cholesterol membranes using X-ray diffraction methods. Biochim Biophys Acta. 1981 Feb 20;641(1):281–285. doi: 10.1016/0005-2736(81)90593-9. [DOI] [PubMed] [Google Scholar]
- Fernández M. S., Cerbón J. The importance of the hydrophobic interactions of local anesthetics in the displacement of polyvalent cations from artificial lipid membranes. Biochim Biophys Acta. 1973 Feb 27;298(1):8–14. doi: 10.1016/0005-2736(73)90003-5. [DOI] [PubMed] [Google Scholar]
- Gaffney B. J., Mich R. J. Letter: A new measurement of surface charge in model and biological lipid membranes. J Am Chem Soc. 1976 May 12;98(10):3044–3045. doi: 10.1021/ja00426a076. [DOI] [PubMed] [Google Scholar]
- Gargiulo R. J., Giotta G. J., Wang H. H. Spin-labeled analogs of local anesthetics. J Med Chem. 1973 Jun;16(6):707–708. doi: 10.1021/jm00264a030. [DOI] [PubMed] [Google Scholar]
- Granett S., Villarejo M. Selective inhibition of carbohydrate transport by the local anesthetic procaine in Escherichia coli. J Bacteriol. 1981 Aug;147(2):289–296. doi: 10.1128/jb.147.2.289-296.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanahan D. J., Ekholm J. E. The preparation of red cell ghosts (membranes). Methods Enzymol. 1974;31:168–172. doi: 10.1016/0076-6879(74)31018-x. [DOI] [PubMed] [Google Scholar]
- Hauser H., Penkett S. A., Chapman D. Nuclear magnetic resonance spectroscopic studies of procaine hydrochloride and tetracaine hydrochloride at lipid-water interfaces. Biochim Biophys Acta. 1969;183(3):466–475. doi: 10.1016/0005-2736(69)90161-8. [DOI] [PubMed] [Google Scholar]
- Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jost P. C., Griffith O. H. The spin-labeling technique. Methods Enzymol. 1978;49:369–418. doi: 10.1016/s0076-6879(78)49019-6. [DOI] [PubMed] [Google Scholar]
- Koblin D. D., Kaufmann S. A., Wang H. H. Quenching of 1-anilinonaphthalene-8-sulfonate fluorescence by a spin-labeled local anesthetic: a membrane phenomenon. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1077–1083. doi: 10.1016/0006-291x(73)90574-3. [DOI] [PubMed] [Google Scholar]
- Koblin D. D., Pace W. D., Wang H. H. The penetration of local anesthetics into the red blood cell membrane as studied by fluorescence quenching. Arch Biochem Biophys. 1975 Nov;171(1):176–182. doi: 10.1016/0003-9861(75)90021-1. [DOI] [PubMed] [Google Scholar]
- Miller K. W., Paton W. D., Smith E. B., Smith R. A. Physicochemical approaches to the mode of action of general anesthetics. Anesthesiology. 1972 Apr;36(4):339–351. doi: 10.1097/00000542-197204000-00008. [DOI] [PubMed] [Google Scholar]
- Narahashi T., Frazier T., Yamada M. The site of action and active form of local anesthetics. I. Theory and pH experiments with tertiary compounds. J Pharmacol Exp Ther. 1970 Jan;171(1):32–44. [PubMed] [Google Scholar]
- Poste G., Papahadjopoulos D., Nicolson G. L. Local anesthetics affect transmembrane cytoskeletal control of mobility and distribution of cell surface receptors. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4430–4434. doi: 10.1073/pnas.72.11.4430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSE H. G., OKLANDER M. IMPROVED PROCEDURE FOR THE EXTRACTION OF LIPIDS FROM HUMAN ERYTHROCYTES. J Lipid Res. 1965 Jul;6:428–431. [PubMed] [Google Scholar]
- SKOU J. C. Local anaesthetics. VI. Relation between blocking potency and penetration of a monomolecular layer of lipoids from nerves. Acta Pharmacol Toxicol (Copenh) 1954;10(4):325–337. doi: 10.1111/j.1600-0773.1954.tb01349.x. [DOI] [PubMed] [Google Scholar]
- Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
- Szoka F., Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4194–4198. doi: 10.1073/pnas.75.9.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAYLOR R. E. Effect of procaine on electrical properties of squid axon membrane. Am J Physiol. 1959 May;196(5):1071–1078. doi: 10.1152/ajplegacy.1959.196.5.1071. [DOI] [PubMed] [Google Scholar]
- Tencheva J., Velinov G., Budevsky O. New approach of the extrapolation procedure in the determination of acid-base constants of poorly soluble pharmaceuticals. Arzneimittelforschung. 1979;29(9):1331–1334. [PubMed] [Google Scholar]
- Trudell J. R. A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology. 1977 Jan;46(1):5–10. doi: 10.1097/00000542-197701000-00003. [DOI] [PubMed] [Google Scholar]
- Wang H. H., Yeh J. Z., Narahashi T. Interaction of spin-labeled local anesthetics with the sodium channel of squid axon membranes. J Membr Biol. 1982;66(3):227–233. doi: 10.1007/BF01868497. [DOI] [PubMed] [Google Scholar]
- Yeagle P. L., Hutton W. C., Martin R. B. Molecular dynamics of the local anesthetic tetracaine in phospholipid vesicles. Biochim Biophys Acta. 1977 Mar 1;465(2):173–178. doi: 10.1016/0005-2736(77)90071-2. [DOI] [PubMed] [Google Scholar]
