Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Sep;80(17):5310–5314. doi: 10.1073/pnas.80.17.5310

Identification of key regulated events early in the life of hybrid animal cells constructed by nuclear transplantation.

M J Hightower, J Bruno, J J Lucas
PMCID: PMC384245  PMID: 6577429

Abstract

Reconstituted cells were constructed by fusion of cytoplasts from the human diploid fibroblast cell strain Detroit 532 and karyoplasts from the mouse fibroblast cell line A9. Several cellular properties were examined during the first 48 hr after nuclear transplantation. (i) The overall morphology of the cells originally resembled that of the cytoplasmic donor, Detroit 532, but rapidly changed to approximate that of the nuclear donor, A9. However, definitive changes in the microfilament structure of the reconstituted cells were not seen until 24-48 hr after fusion. These observations support the idea that the presence or absence of an ordered array of microfilament bundles is not the sole determinant of cell shape. (ii) Although cytoplasts and karyoplasts were prepared from cultures of randomly growing cells, the first division of reconstituted cells occurred in a synchronous manner. However, the initiation of DNA synthesis was not synchronized. It thus appeared that, in their first cell cycle, the cells had a G2 period of variable length. The results further suggest that the cytoplasm of interphase fibroblasts contains the material necessary to initiate or support DNA synthesis in a transplanted nucleus but not entry into mitosis. (iii) A two-dimensional gel electrophoretic analysis of polypeptide synthesis in reconstituted cell cultures showed that synthesis directed by transplanted mouse nuclei could be detected as early as 3-6 hr after fusion. Some of the mouse polypeptides detected at the earliest time points studied were not among the major polypeptides synthesized by the parental A9 cells. By about 48 hr after fusion, the pattern of polypeptides produced by reconstituted cells was almost indistinguishable from that of the nuclear donor parent cells.

Full text

PDF
5310

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown R. L., Wible L. J., Brinkley B. R. Cytoplasmic microtubule assembly-disassembly in enucleated cells and regenerating karyoplasts. Cell Biol Int Rep. 1980 May;4(5):453–458. doi: 10.1016/0309-1651(80)90032-6. [DOI] [PubMed] [Google Scholar]
  2. Bruno J., Reich N., Lucas J. J. Globin synthesis in hybrid cells constructed by transplantation of dormant avian erythrocyte nuclei into enucleated fibroblasts. Mol Cell Biol. 1981 Dec;1(12):1163–1176. doi: 10.1128/mcb.1.12.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark M. A., Shay J. W. Long-lived cytoplasmic factors that suppress adrenal steroidogenesis. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1144–1148. doi: 10.1073/pnas.79.4.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ege T., Hamberg H., Krondahl U., Ericsson J., Ringertz N. R. Characterization of minicells (nuclei) obtained by cytochalasin enucleation. Exp Cell Res. 1974 Aug;87(2):365–377. doi: 10.1016/0014-4827(74)90493-5. [DOI] [PubMed] [Google Scholar]
  5. Ege T., Krondahl U., Ringertz N. R. Introduction of nuclei and micronuclei into cells and enucleated cytoplasms by Sendai virus induced fusion. Exp Cell Res. 1974 Oct;88(2):428–432. doi: 10.1016/0014-4827(74)90267-5. [DOI] [PubMed] [Google Scholar]
  6. Follett E. A. A convenient method for enucleating cells in quantity. Exp Cell Res. 1974 Mar 15;84(1):72–78. doi: 10.1016/0014-4827(74)90381-4. [DOI] [PubMed] [Google Scholar]
  7. Gopalakrishnan T. V., Anderson W. F. Epigenetic activation of phenylalanine hydroxylase in mouse erythroleukemia cells by the cytoplast of rat hepatoma cells. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3932–3936. doi: 10.1073/pnas.76.8.3932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gopalakrishnan T. V., Thompson E. B., Anderson W. F. Extinction of hemoglobin inducibility in Friend erythroleukemia cells by fusion with cytoplasm of enucleated mouse neuroblastoma or fibroblast cells. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1642–1646. doi: 10.1073/pnas.74.4.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hightower M. J., Fairfield F. R., Lucas J. J. A staining procedure for identifying viable cell hybrids constructed by somatic cell fusion, cybridization, or nuclear transplantation. Somatic Cell Genet. 1981 May;7(3):321–329. doi: 10.1007/BF01538857. [DOI] [PubMed] [Google Scholar]
  10. Hightower M. J., Lucas J. J. Construction of viable mouse-human hybrid cells by nuclear transplantation. J Cell Physiol. 1980 Oct;105(1):93–103. doi: 10.1002/jcp.1041050112. [DOI] [PubMed] [Google Scholar]
  11. Howell A. N., Sager R. Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines. Proc Natl Acad Sci U S A. 1978 May;75(5):2358–2362. doi: 10.1073/pnas.75.5.2358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kahn C. R., Bertolotti R., Ninio M., Weiss M. C. Short-lived cytoplasmic regulators of gene expression in cell cybrids. Nature. 1981 Apr 23;290(5808):717–720. doi: 10.1038/290717a0. [DOI] [PubMed] [Google Scholar]
  13. Krondahl U., Bols N., Ege T., Linder S., Ringertz N. R. Cells reconstituted from cell fragments of two different species multiply and form colonies. Proc Natl Acad Sci U S A. 1977 Feb;74(2):606–609. doi: 10.1073/pnas.74.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LITTLEFIELD J. W. SELECTION OF HYBRIDS FROM MATINGS OF FIBROBLASTS IN VITRO AND THEIR PRESUMED RECOMBINANTS. Science. 1964 Aug 14;145(3633):709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
  15. Linder S. Teratoma cybrids. An analysis of the post-fusion effects of myoblast cytoplasms on embryonal carcinoma cells. Exp Cell Res. 1980 Nov;130(1):159–167. doi: 10.1016/0014-4827(80)90052-x. [DOI] [PubMed] [Google Scholar]
  16. Lipsich L. A., Kates J. R., Lucas J. J. Expression of a liver-specific function by mouse fibroblast nuclei transplanted into rat hepatoma cytoplasts. Nature. 1979 Sep 6;281(5726):74–76. doi: 10.1038/281074a0. [DOI] [PubMed] [Google Scholar]
  17. Lipsich L. A., Lucas J. J., Kates J. R. Cell cycle dependence of the reactivation of chick erythrocyte nuclei after transplantation into mouse L929 cell cytoplasts. J Cell Physiol. 1978 Nov;97(2):199–207. doi: 10.1002/jcp.1040970209. [DOI] [PubMed] [Google Scholar]
  18. Lockwood A. H. Immunofluorescence radioautography. Simultaneous visualization of DNA replication and supramolecular antigens in individual cells. Exp Cell Res. 1980 Aug;128(2):383–394. doi: 10.1016/0014-4827(80)90074-9. [DOI] [PubMed] [Google Scholar]
  19. Lucas J. J., Kates J. R. The construction of viable nuclear-cytoplasmic hybrid cells by nuclear transplantation. Cell. 1976 Mar;7(3):397–405. doi: 10.1016/0092-8674(76)90169-0. [DOI] [PubMed] [Google Scholar]
  20. Lucas J. J., Szekely E., Kates J. R. The regeneration and division of mouse L-cell karyoplasts. Cell. 1976 Jan;7(1):115–122. doi: 10.1016/0092-8674(76)90261-0. [DOI] [PubMed] [Google Scholar]
  21. Prescott D. M., Myerson D., Wallace J. Enucleation of mammalian cells with cytochalasin B. Exp Cell Res. 1972;71(2):480–485. doi: 10.1016/0014-4827(72)90322-9. [DOI] [PubMed] [Google Scholar]
  22. Ringertz N. R., Krondahl U., Coleman J. R. Reconstitution of cells by fusion of cell fragments. I. Myogenic expression after fusion of minicells from rat myoblasts (L6) with mouse fibroblast (A9) cytoplasm. Exp Cell Res. 1978 May;113(2):233–246. doi: 10.1016/0014-4827(78)90363-4. [DOI] [PubMed] [Google Scholar]
  23. Russell W. C., Newman C., Williamson D. H. A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasmas and viruses. Nature. 1975 Feb 6;253(5491):461–462. doi: 10.1038/253461a0. [DOI] [PubMed] [Google Scholar]
  24. Sekiguchi T., Tosu M., Yoshida M. C., Oikawa A., Ishihara K., Fujiki H., Tumuraya M., Kameya T. Induction of supermelanin synthesis and morphological changes in interspecific reconstituted cells and its reversal by tumor promoter. Somatic Cell Genet. 1982 Sep;8(5):605–622. doi: 10.1007/BF01542854. [DOI] [PubMed] [Google Scholar]
  25. Shay J. W., Porter K. R., Prescott D. M. The surface morphology and fine structure of CHO (Chinese hamster ovary) cells following enucleation. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3059–3063. doi: 10.1073/pnas.71.8.3059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stancel G. M., Prescott D. M., Liskay R. M. Most of the G1 period in hamster cells is eliminated by lengthening the S period. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6295–6298. doi: 10.1073/pnas.78.10.6295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Veomett G., Prescott D. M., Shay J., Porter K. R. Reconstruction of mammalian cells from nuclear and cytoplasmic components separated by treatment with cytochalasin B. Proc Natl Acad Sci U S A. 1974 May;71(5):1999–2002. doi: 10.1073/pnas.71.5.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wright W. E., Hayflick L. Formation of anucleate and multinucleate cells in normal and SV 40 transformed WI-38 by cytochalasin B. Exp Cell Res. 1972 Sep;74(1):187–194. doi: 10.1016/0014-4827(72)90496-x. [DOI] [PubMed] [Google Scholar]
  29. Zorn G. A., Anderson C. W. Adenovirus type 2 expresses fiber in monkey-human hybrids and reconstructed cells. J Virol. 1981 Feb;37(2):759–769. doi: 10.1128/jvi.37.2.759-769.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zorn G. A., Lucas J. J., Kates J. R. Purification and characterization of regenerating mouse L929 karyoplasts. Cell. 1979 Nov;18(3):659–672. doi: 10.1016/0092-8674(79)90121-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES