Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Sep;80(18):5460–5464. doi: 10.1073/pnas.80.18.5460

Heparin-catalyzed inhibitor/protease reactions: kinetic evidence for a common mechanism of action of heparin.

M J Griffith
PMCID: PMC384277  PMID: 6577437

Abstract

Three different heparin-catalyzed inhibitor/protease reactions were studied: antithrombin III/thrombin, heparin cofactor II/thrombin, antithrombin III/factor Xa. The three reactions were saturable with respect to both inhibitor and protease. The initial reaction velocity, for each reaction, could be described by the general rate equation for a random-order bireactant enzyme-catalyzed reaction. The kinetic parameters for the heparin-catalyzed antithrombin III/thrombin and antithrombin III/factor Xa reactions differed in terms of apparent maximum velocity (Vmax) and apparent heparin-protease dissociation constant values. The apparent heparin-antithrombin III dissociation constant values were the same for both reactions. The kinetic parameters for the heparin-catalyzed antithrombin III/thrombin and heparin cofactor II/thrombin reactions differed in terms of apparent Vmax and apparent heparin-inhibitor dissociation constant values. The apparent heparin-thrombin dissociation constant values were the same for both reactions. The results are consistent with a general mechanism of action of heparin for the three reactions that, in its simplest form, requires only that both protease and inhibitor bind to heparin for catalysis to occur.

Full text

PDF
5460

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abildgaard U. Highly purified antithrombin 3 with heparin cofactor activity prepared by disc electrophoresis. Scand J Clin Lab Invest. 1968;21(1):89–91. doi: 10.3109/00365516809076981. [DOI] [PubMed] [Google Scholar]
  2. Briginshaw G. F., Shanberge J. N. Identification of two distinct heparin cofactors in human plasma. II. Inhibition of thrombin and activated factor X. Thromb Res. 1974 Mar;4(3):463–477. doi: 10.1016/0049-3848(74)90081-4. [DOI] [PubMed] [Google Scholar]
  3. Briginshaw G. F., Shanberge J. N. Identification of two distinct heparin cofactors in human plasma. Separation and partial purification. Arch Biochem Biophys. 1974 Apr 2;161(2):683–690. doi: 10.1016/0003-9861(74)90354-3. [DOI] [PubMed] [Google Scholar]
  4. Danishefsky I., Ahrens M., Klein S. Effect of heparin modification on its activity in enhancing the inhibition of thrombin by antithrombin III. Biochim Biophys Acta. 1977 Jun 23;498(1):215–222. doi: 10.1016/0304-4165(77)90101-5. [DOI] [PubMed] [Google Scholar]
  5. Griffith M. J., Carraway T., White G. C., Dombrose F. A. Heparin cofactor activities in a family with hereditary antithrombin III deficiency: evidence for a second heparin cofactor in human plasma. Blood. 1983 Jan;61(1):111–118. [PubMed] [Google Scholar]
  6. Griffith M. J. Kinetics of the heparin-enhanced antithrombin III/thrombin reaction. Evidence for a template model for the mechanism of action of heparin. J Biol Chem. 1982 Jul 10;257(13):7360–7365. [PubMed] [Google Scholar]
  7. Griffith M. J., Reisner H. M., Lundblad R. L., Roberts H. R. Measurement of human factor IXa activity in an isolated factor X activation system. Thromb Res. 1982 Aug 1;27(3):289–301. doi: 10.1016/0049-3848(82)90076-7. [DOI] [PubMed] [Google Scholar]
  8. Griffith M. J. The heparin-enhanced antithrombin III/thrombin reaction is saturable with respect to both thrombin and antithrombin III. J Biol Chem. 1982 Dec 10;257(23):13899–13302. [PubMed] [Google Scholar]
  9. Holmer E., Söderström G., Andersson L. O. Studies on the mechanism of the rate-enhancing effect of heparin on the thrombin-antithrombin III reaction. Eur J Biochem. 1979 Jan 2;93(1):1–5. doi: 10.1111/j.1432-1033.1979.tb12787.x. [DOI] [PubMed] [Google Scholar]
  10. Jordan R. E., Oosta G. M., Gardner W. T., Rosenberg R. D. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J Biol Chem. 1980 Nov 10;255(21):10081–10090. [PubMed] [Google Scholar]
  11. Oosta G. M., Gardner W. T., Beeler D. L., Rosenberg R. D. Multiple functional domains of the heparin molecule. Proc Natl Acad Sci U S A. 1981 Feb;78(2):829–833. doi: 10.1073/pnas.78.2.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pomerantz M. W., Owen W. G. A catalytic role for heparin. Evidence for a ternary complex of heparin cofactor thrombin and heparin. Biochim Biophys Acta. 1978 Jul 21;535(1):66–77. doi: 10.1016/0005-2795(78)90033-8. [DOI] [PubMed] [Google Scholar]
  13. Rosenberg R. D. Chemistry of the hemostatic mechanism and its relationship to the action of heparin. Fed Proc. 1977 Jan;36(1):10–18. [PubMed] [Google Scholar]
  14. Rosenberg R. D., Damus P. S. The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem. 1973 Sep 25;248(18):6490–6505. [PubMed] [Google Scholar]
  15. Tollefsen D. M., Blank M. K. Detection of a new heparin-dependent inhibitor of thrombin in human plasma. J Clin Invest. 1981 Sep;68(3):589–596. doi: 10.1172/JCI110292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tollefsen D. M., Majerus D. W., Blank M. K. Heparin cofactor II. Purification and properties of a heparin-dependent inhibitor of thrombin in human plasma. J Biol Chem. 1982 Mar 10;257(5):2162–2169. [PubMed] [Google Scholar]
  17. Yin E. T., Wessler S. Heparin-accelerated inhibition of activated factor X by its natural plasma inhibitor. Biochim Biophys Acta. 1970 Feb 24;201(2):387–390. doi: 10.1016/0304-4165(70)90316-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES