Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Sep;80(18):5583–5587. doi: 10.1073/pnas.80.18.5583

1 alpha,25-dihydroxyvitamin D3 promotes fusion of mouse alveolar macrophages both by a direct mechanism and by a spleen cell-mediated indirect mechanism.

E Abe, C Miyaura, H Tanaka, Y Shiina, T Kuribayashi, S Suda, Y Nishii, H F DeLuca, T Suda
PMCID: PMC384302  PMID: 6577445

Abstract

Extensive fusion was induced in mouse alveolar macrophages by treatment with conditioned media obtained from spleen cell cultures treated with 15 micrograms of phytohemagglutinin or concanavalin A per ml or with 12 nM 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3]. The fusion rate was 80-90% on day 3. In addition, 1 alpha,25(OH)2D3 added directly to alveolar macrophages induced fusion of about 35% of the cells on day 3, whereas direct addition of phytohemagglutinin and concanavalin A did not enhance fusion at all. When conditioned media from spleen cell or T cell cultures treated with 12 nM 1 alpha,25(OH)2D3 were applied to a Sephadex G-100 column, a fusion factor (Mr 37,000-70,000) could be separated from 1 alpha,25(OH)2D3. 1 alpha,25(OH)2D3 induced fusion at 0.012-120 nM in a dose-dependent manner both by direct action and by spleen cell-mediated indirect action, but the fusion rate was always much greater in the latter than in the former at each concentration of the vitamin. Of the vitamin D3 derivatives tested, 1 alpha,25(OH)2D3 was the most potent, followed successively by 1 alpha,24R,25-trihydroxyvitamin D3, 1 alpha-hydroxyvitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3. These results clearly indicate that 1 alpha,25(OH)2D3 induces fusion of mouse alveolar macrophages by both a direct and an indirect mechanism, the latter mediated by spleen cells, probably by T cells.

Full text

PDF
5583

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe E., Miyaura C., Sakagami H., Takeda M., Konno K., Yamazaki T., Yoshiki S., Suda T. Differentiation of mouse myeloid leukemia cells induced by 1 alpha,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4990–4994. doi: 10.1073/pnas.78.8.4990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams D. O. The granulomatous inflammatory response. A review. Am J Pathol. 1976 Jul;84(1):164–192. [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brumbaugh P. F., Haussler M. R. 1 Alpha,25-dihydroxycholecalciferol receptors in intestine. I. Association of 1 alpha,25-dihydroxycholecalciferol with intestinal mucosa chromatin. J Biol Chem. 1974 Feb 25;249(4):1251–1257. [PubMed] [Google Scholar]
  5. Burger E. H., Van der Meer J. W., van de Gevel J. S., Gribnau J. C., Thesingh G. W., van Furth R. In vitro formation of osteoclasts from long-term cultures of bone marrow mononuclear phagocytes. J Exp Med. 1982 Dec 1;156(6):1604–1614. doi: 10.1084/jem.156.6.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CARLSSON A. Tracer experiments on the effect of vitamin D on the skeletal metabolism of calcium and phosphorus. Acta Physiol Scand. 1952 Sep 10;26(2-3):212–220. doi: 10.1111/j.1748-1716.1952.tb00904.x. [DOI] [PubMed] [Google Scholar]
  7. Chambers T. J. Multinucleate giant cells. J Pathol. 1978 Nov;126(3):125–148. doi: 10.1002/path.1711260302. [DOI] [PubMed] [Google Scholar]
  8. Chen P., Trummel C., Horton J., Baker J. J., Oppenheim J. J. Production of osteoclast-activating factor by normal human peripheral blood rosetting and nonrosetting lymphocytes. Eur J Immunol. 1976 Oct;6(10):732–736. doi: 10.1002/eji.1830061014. [DOI] [PubMed] [Google Scholar]
  9. DeLuca H. F., Schnoes H. K. Metabolism and mechanism of action of vitamin D. Annu Rev Biochem. 1976;45:631–666. doi: 10.1146/annurev.bi.45.070176.003215. [DOI] [PubMed] [Google Scholar]
  10. Dominguez J. H., Mundy G. R. Monocytes mediate osteoclastic bone resorption by prostaglandin production. Calcif Tissue Int. 1980;31(1):29–34. doi: 10.1007/BF02407164. [DOI] [PubMed] [Google Scholar]
  11. Galindo B., Lazdins J., Castillo R. Fusion of normal rabbit alveolar macrophages induced by supernatant fluids from BCG-sensitized lymph node cells after elicitation by antigen. Infect Immun. 1974 Feb;9(2):212–216. doi: 10.1128/iai.9.2.212-216.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  13. Kahn A. J., Simmons D. J. Investigation of cell lineage in bone using a chimaera of chick and quial embryonic tissue. Nature. 1975 Nov 27;258(5533):325–327. doi: 10.1038/258325a0. [DOI] [PubMed] [Google Scholar]
  14. Kahn A. J., Stewart C. C., Teitelbaum S. L. Contact-mediated bone resorption by human monocytes in vitro. Science. 1978 Mar 3;199(4332):988–990. doi: 10.1126/science.622581. [DOI] [PubMed] [Google Scholar]
  15. Kasukabe T., Honma Y., Hozumi M. Induction of lysosomal enzyme activities with glucocorticoids during differentiation of cultured mouse myeloid leukemia cells. Gan. 1977 Dec;68(6):765–773. [PubMed] [Google Scholar]
  16. Ko J. S., Bernard G. W. Osteoclast formation in vitro from bone marrow mononuclear cells in osteoclast-free bone. Am J Anat. 1981 Aug;161(4):415–425. doi: 10.1002/aja.1001610407. [DOI] [PubMed] [Google Scholar]
  17. Luben R. A., Mundy G. R., Trummel C. L., Raisz L. G. Partial purification of osteoclast-activating factor from phytohemagglutinin-stimulated human leukocytes. J Clin Invest. 1974 May;53(5):1473–1480. doi: 10.1172/JCI107696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mundy G. R., Luben R. A., Raisz L. G., Oppenheim J. J., Buell D. N. Bone-resorbing activity in supernatants from lymphoid cell lines. N Engl J Med. 1974 Apr 18;290(16):867–871. doi: 10.1056/NEJM197404182901601. [DOI] [PubMed] [Google Scholar]
  19. Mundy G. R., Raisz L. G., Shapiro J. L., Bandelin J. G., Turcotte R. J. Big and little forms of osteoclast activating factor. J Clin Invest. 1977 Jul;60(1):122–128. doi: 10.1172/JCI108748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nathan C. F., Remold H. G., David J. R. Characterization of a lymphocyte factor which alters macrophage functions. J Exp Med. 1973 Feb 1;137(2):275–290. doi: 10.1084/jem.137.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parks D. E., Weiser R. S. The role of phagocytosis and natural lymphokines in the fusion of alveolar macrophages to form Langhans giant cells. J Reticuloendothel Soc. 1975 Apr;17(4):219–228. [PubMed] [Google Scholar]
  22. Postlethwaite A. E., Jackson B. K., Beachey E. H., Kang A. H. Formation of multinucleated giant cells from human monocyte precursors. Mediation by a soluble protein from antigen-and mitogen-stimulated lymphocytes. J Exp Med. 1982 Jan 1;155(1):168–178. doi: 10.1084/jem.155.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Raisz L. G., Trummel C. L., Holick M. F., DeLuca H. F. 1,25-dihydroxycholecalciferol: a potent stimulator of bone resorption in tissue culture. Science. 1972 Feb 18;175(4023):768–769. doi: 10.1126/science.175.4023.768. [DOI] [PubMed] [Google Scholar]
  24. Remold H. G., David R. A., David J. R. Characterization of migration inhibitory factor (MIF) from guinea pig lymphocytes stimulated with concanavalin A. J Immunol. 1972 Sep;109(3):578–586. [PubMed] [Google Scholar]
  25. Remold H. G., Mednis A. D. Two migration inhibitory factors with different chromatographic behavior and isoelectric points. J Immunol. 1977 Jun;118(6):2015–2019. [PubMed] [Google Scholar]
  26. Shiina Y., Abe E., Miyaura C., Tanaka H., Yamada S., Ohmori M., Nakayama K., Takayama H., Matsunaga I., Nishii Y. Biological activity of 24,24-difluoro-1 alpha, 25-dihydroxyvitamin D3 and 1 alpha, 25-dihydroxyvitamin D3-26,23-lactone in inducing differentiation of human myeloid leukemia cells. Arch Biochem Biophys. 1983 Jan;220(1):90–94. doi: 10.1016/0003-9861(83)90390-9. [DOI] [PubMed] [Google Scholar]
  27. Sone S., Bucana C., Hoyer L. C., Fidler I. J. Kinetics and ultrastructural studies of the induction of rat alveolar macrophage fusion by mediators released from mitogen-stimulated lymphocytes. Am J Pathol. 1981 May;103(2):234–246. [PMC free article] [PubMed] [Google Scholar]
  28. Tanaka H., Abe E., Miyaura C., Kuribayashi T., Konno K., Nishii Y., Suda T. 1 alpha,25-Dihydroxycholecalciferol and a human myeloid leukaemia cell line (HL-60). Biochem J. 1982 Jun 15;204(3):713–719. doi: 10.1042/bj2040713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yamada S., Ohmori M., Takayama H., Takasaki Y., Suda T. Isolation and identification of 1 alpha- and 23-hydroxylated metabolites of 25-hydroxy-24-oxovitamin D3 from in vitro incubates of chick kidney homogenates. J Biol Chem. 1983 Jan 10;258(1):457–463. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES