Abstract
The neural cell adhesion molecule, N-CAM, is a cell surface glycoprotein found on embryonic and adult neurons and on a variety of ectodermal and mesodermal tissues in very early embryos. During development, it shows local variations in prevalence at the cell surface as well as conversion from an embryonic form (E form) with high sialic acid content to an adult form (A form) with lesser amounts of this sugar. This E leads to A conversion occurs on different schedules in different brain regions, and it has been hypothesized that both the conversion and the prevalence changes are related to early regulation of pattern formation and connectivity. In order to identify precisely the consequences of these mechanisms of local cell surface modulation of N-CAM, an assay was developed to measure the rate of aggregation either of vesicles reconstituted from lipid and purified N-CAM or of native brain membrane vesicles. In both preparations, aggregation was greater than 95% inhibitable by specific anti-(N-CAM) Fab' fragments. The rates of aggregation of reconstituted N-CAM vesicles and native brain vesicles were found to be inversely related to the sialic acid content of their N-CAM molecules, with full desialylation resulting in about a 4-fold increase in rate over E-form N-CAM. Intermediate rates were obtained both with A-form N-CAM (which contains only one-third of the sialic acid content of E-form N-CAM) and with partially desialylated E-form N-CAM. The rate of coaggregation of reconstituted vesicles containing E-form N-CAM with reconstituted vesicles containing A-form N-CAM was also intermediate, implying that desialylation did not change the nature of (N-CAM)-(N-CAM) binding but only its rate. Even larger alterations in vesicle aggregation rate were seen when the amount of N-CAM per vesicle was altered. A 2-fold increase in the N-CAM-to-lipid ratio of reconstituted vesicles resulted in a greater than 30-fold increase in their rate of aggregation. Moreover, desialylation did not cause a further increase in the rate of aggregation of these already rapidly aggregating vesicles. These results in a model system demonstrate the large range of binding rates that are obtainable by various forms of local surface modulation of N-CAM. They are consistent with the proposal that similar alterations affecting (N-CAM)-mediated cell adhesion in vivo may be major factors in pattern formation during development of the nervous system.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Buskirk D. R., Thiery J. P., Rutishauser U., Edelman G. M. Antibodies to a neural cell adhesion molecule disrupt histogenesis in cultured chick retinae. Nature. 1980 Jun 12;285(5765):488–489. doi: 10.1038/285488a0. [DOI] [PubMed] [Google Scholar]
- Cowan W. M. Aspects of neural development. Int Rev Physiol. 1978;17:149–191. [PubMed] [Google Scholar]
- Cunningham B. A., Hoffman S., Rutishauser U., Hemperly J. J., Edelman G. M. Molecular topography of the neural cell adhesion molecule N-CAM: surface orientation and location of sialic acid-rich and binding regions. Proc Natl Acad Sci U S A. 1983 May;80(10):3116–3120. doi: 10.1073/pnas.80.10.3116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelman G. M. Cell adhesion molecules. Science. 1983 Feb 4;219(4584):450–457. doi: 10.1126/science.6823544. [DOI] [PubMed] [Google Scholar]
- Edelman G. M., Chuong C. M. Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci U S A. 1982 Nov;79(22):7036–7040. doi: 10.1073/pnas.79.22.7036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelman G. M., Gallin W. J., Delouvée A., Cunningham B. A., Thiery J. P. Early epochal maps of two different cell adhesion molecules. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4384–4388. doi: 10.1073/pnas.80.14.4384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edelman G. M. Surface modulation in cell recognition and cell growth. Science. 1976 Apr 16;192(4236):218–226. doi: 10.1126/science.769162. [DOI] [PubMed] [Google Scholar]
- Hoffman S., Sorkin B. C., White P. C., Brackenbury R., Mailhammer R., Rutishauser U., Cunningham B. A., Edelman G. M. Chemical characterization of a neural cell adhesion molecule purified from embryonic brain membranes. J Biol Chem. 1982 Jul 10;257(13):7720–7729. [PubMed] [Google Scholar]
- Holloway P. W. A simple procedure for removal of Triton X-100 from protein samples. Anal Biochem. 1973 May;53(1):304–308. doi: 10.1016/0003-2697(73)90436-3. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Rakic P. Prenatal development of the visual system in rhesus monkey. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):245–260. doi: 10.1098/rstb.1977.0040. [DOI] [PubMed] [Google Scholar]
- Rothbard J. B., Brackenbury R., Cunningham B. A., Edelman G. M. Differences in the carbohydrate structures of neural cell-adhesion molecules from adult and embryonic chicken brains. J Biol Chem. 1982 Sep 25;257(18):11064–11069. [PubMed] [Google Scholar]
- Rutishauser U., Hoffman S., Edelman G. M. Binding properties of a cell adhesion molecule from neural tissue. Proc Natl Acad Sci U S A. 1982 Jan;79(2):685–689. doi: 10.1073/pnas.79.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutishauser U., Thiery J. P., Brackenbury R., Edelman G. M. Adhesion among neural cells of the chick embryo. III. Relationship of the surface molecule CAM to cell adhesion and the development of histotypic patterns. J Cell Biol. 1978 Nov;79(2 Pt 1):371–381. doi: 10.1083/jcb.79.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SPERRY R. W. CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. Proc Natl Acad Sci U S A. 1963 Oct;50:703–710. doi: 10.1073/pnas.50.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thiery J. P., Duband J. L., Rutishauser U., Edelman G. M. Cell adhesion molecules in early chicken embryogenesis. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6737–6741. doi: 10.1073/pnas.79.21.6737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]