Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Sep 3;93(18):9374–9377. doi: 10.1073/pnas.93.18.9374

DNA sequence insertion and evolutionary variation in gene regulation.

R J Britten 1
PMCID: PMC38434  PMID: 8790336

Abstract

Current evidence on the long-term evolutionary effect of insertion of sequence elements into gene regions is reviewed, restricted to cases where a sequence derived from a past insertion participates in the regulation of expression of a useful gene. Ten such examples in eukaryotes demonstrate that segments of repetitive DNA or mobile elements have been inserted in the past in gene regions, have been preserved, sometimes modified by selection, and now affect control of transcription of the adjacent gene. Included are only examples in which transcription control was modified by the insert. Several cases in which merely transcription initiation occurred in the insert were set aside. Two of the examples involved the long terminal repeats of mammalian endogenous retroviruses. Another two examples were control of transcription by repeated sequence inserts in sea urchin genomes. There are now six published examples in which Alu sequences were inserted long ago into human gene regions, were modified, and now are central in control/enhancement of transcription. The number of published examples of Alu sequences affecting gene control has grown threefold in the last year and is likely to continue growing. Taken together, all of these examples show that the insertion of sequence elements in the genome has been a significant source of regulatory variation in evolution.

Full text

PDF
9374

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Danielsen M., Robins D. M. Androgen-specific gene activation via a consensus glucocorticoid response element is determined by interaction with nonreceptor factors. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11660–11663. doi: 10.1073/pnas.89.24.11660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adler A. J., Scheller A., Robins D. M. The stringency and magnitude of androgen-specific gene activation are combinatorial functions of receptor and nonreceptor binding site sequences. Mol Cell Biol. 1993 Oct;13(10):6326–6335. doi: 10.1128/mcb.13.10.6326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brini A. T., Lee G. M., Kinet J. P. Involvement of Alu sequences in the cell-specific regulation of transcription of the gamma chain of Fc and T cell receptors. J Biol Chem. 1993 Jan 15;268(2):1355–1361. [PubMed] [Google Scholar]
  4. Britten R. J. Cases of ancient mobile element DNA insertions that now affect gene regulation. Mol Phylogenet Evol. 1996 Feb;5(1):13–17. doi: 10.1006/mpev.1996.0003. [DOI] [PubMed] [Google Scholar]
  5. Britten R. J., Davidson E. H. Gene regulation for higher cells: a theory. Science. 1969 Jul 25;165(3891):349–357. doi: 10.1126/science.165.3891.349. [DOI] [PubMed] [Google Scholar]
  6. Britten R. J., Davidson E. H. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Q Rev Biol. 1971 Jun;46(2):111–138. doi: 10.1086/406830. [DOI] [PubMed] [Google Scholar]
  7. Britten R. J. Evidence that most human Alu sequences were inserted in a process that ceased about 30 million years ago. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6148–6150. doi: 10.1073/pnas.91.13.6148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Britten R. J. Evolutionary selection against change in many Alu repeat sequences interspersed through primate genomes. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5992–5996. doi: 10.1073/pnas.91.13.5992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Britten R. J. Rates of DNA sequence evolution differ between taxonomic groups. Science. 1986 Mar 21;231(4744):1393–1398. doi: 10.1126/science.3082006. [DOI] [PubMed] [Google Scholar]
  10. Calzone F. J., Hög C., Teplow D. B., Cutting A. E., Zeller R. W., Britten R. J., Davidson E. H. Gene regulatory factors of the sea urchin embryo. I. Purification by affinity chromatography and cloning of P3A2, a novel DNA-binding protein. Development. 1991 May;112(1):335–350. doi: 10.1242/dev.112.1.335. [DOI] [PubMed] [Google Scholar]
  11. Dodds A. W., Law S. K. The complement component C4 of mammals. Biochem J. 1990 Jan 15;265(2):495–502. doi: 10.1042/bj2650495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gan L., Zhang W., Klein W. H. Repetitive DNA sequences linked to the sea urchin spec genes contain transcriptional enhancer-like elements. Dev Biol. 1990 May;139(1):186–196. doi: 10.1016/0012-1606(90)90287-s. [DOI] [PubMed] [Google Scholar]
  13. Groot P. C., Mager W. H., Henriquez N. V., Pronk J. C., Arwert F., Planta R. J., Eriksson A. W., Frants R. R. Evolution of the human alpha-amylase multigene family through unequal, homologous, and inter- and intrachromosomal crossovers. Genomics. 1990 Sep;8(1):97–105. doi: 10.1016/0888-7543(90)90230-r. [DOI] [PubMed] [Google Scholar]
  14. Hambor J. E., Mennone J., Coon M. E., Hanke J. H., Kavathas P. Identification and characterization of an Alu-containing, T-cell-specific enhancer located in the last intron of the human CD8 alpha gene. Mol Cell Biol. 1993 Nov;13(11):7056–7070. doi: 10.1128/mcb.13.11.7056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hewitt S. M., Fraizer G. C., Saunders G. F. Transcriptional silencer of the Wilms' tumor gene WT1 contains an Alu repeat. J Biol Chem. 1995 Jul 28;270(30):17908–17912. doi: 10.1074/jbc.270.30.17908. [DOI] [PubMed] [Google Scholar]
  16. Makałowski W., Mitchell G. A., Labuda D. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet. 1994 Jun;10(6):188–193. doi: 10.1016/0168-9525(94)90254-2. [DOI] [PubMed] [Google Scholar]
  17. Mao C. A., Gan L., Klein W. H. Multiple Otx binding sites required for expression of the Strongylocentrotus purpuratus Spec2a gene. Dev Biol. 1994 Sep;165(1):229–242. doi: 10.1006/dbio.1994.1249. [DOI] [PubMed] [Google Scholar]
  18. McDonald J. F. Evolution and consequences of transposable elements. Curr Opin Genet Dev. 1993 Dec;3(6):855–864. doi: 10.1016/0959-437x(93)90005-a. [DOI] [PubMed] [Google Scholar]
  19. McHaffie G. S., Ralston S. H. Origin of a negative calcium response element in an ALU-repeat: implications for regulation of gene expression by extracellular calcium. Bone. 1995 Jul;17(1):11–14. doi: 10.1016/8756-3282(95)00131-v. [DOI] [PubMed] [Google Scholar]
  20. Meisler M. H., Ting C. N. The remarkable evolutionary history of the human amylase genes. Crit Rev Oral Biol Med. 1993;4(3-4):503–509. doi: 10.1177/10454411930040033501. [DOI] [PubMed] [Google Scholar]
  21. Nemer M., Bai G., Stuebing E. W. Highly identical cassettes of gene regulatory elements, genomically repetitive and present in RNA. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10851–10855. doi: 10.1073/pnas.90.22.10851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nemer M., Stuebing E. W., Bai G., Parker H. R. Spatial regulation of SpMTA metallothionein gene expression in sea urchin embryos by a regulatory cassette in intron 1. Mech Dev. 1995 Apr;50(2-3):131–137. doi: 10.1016/0925-4773(94)00330-p. [DOI] [PubMed] [Google Scholar]
  23. Norris J., Fan D., Aleman C., Marks J. R., Futreal P. A., Wiseman R. W., Iglehart J. D., Deininger P. L., McDonnell D. P. Identification of a new subclass of Alu DNA repeats which can function as estrogen receptor-dependent transcriptional enhancers. J Biol Chem. 1995 Sep 29;270(39):22777–22782. doi: 10.1074/jbc.270.39.22777. [DOI] [PubMed] [Google Scholar]
  24. Piedrafita F. J., Molander R. B., Vansant G., Orlova E. A., Pfahl M., Reynolds W. F. An Alu element in the myeloperoxidase promoter contains a composite SP1-thyroid hormone-retinoic acid response element. J Biol Chem. 1996 Jun 14;271(24):14412–14420. doi: 10.1074/jbc.271.24.14412. [DOI] [PubMed] [Google Scholar]
  25. Purugganan M. D., Wessler S. R. Transposon signatures: species-specific molecular markers that utilize a class of multiple-copy nuclear DNA. Mol Ecol. 1995 Apr;4(2):265–269. doi: 10.1111/j.1365-294x.1995.tb00218.x. [DOI] [PubMed] [Google Scholar]
  26. Robins D. M., Samuelson L. C. Retrotransposons and the evolution of mammalian gene expression. Genetica. 1992;86(1-3):191–201. doi: 10.1007/BF00133720. [DOI] [PubMed] [Google Scholar]
  27. Robins D. M., Scheller A., Adler A. J. Specific steroid response from a nonspecific DNA element. J Steroid Biochem Mol Biol. 1994 Jun;49(4-6):251–255. doi: 10.1016/0960-0760(94)90265-8. [DOI] [PubMed] [Google Scholar]
  28. Saffer J. D., Thurston S. J. A negative regulatory element with properties similar to those of enhancers is contained within an Alu sequence. Mol Cell Biol. 1989 Feb;9(2):355–364. doi: 10.1128/mcb.9.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saksela K., Baltimore D. Negative regulation of immunoglobulin kappa light-chain gene transcription by a short sequence homologous to the murine B1 repetitive element. Mol Cell Biol. 1993 Jun;13(6):3698–3705. doi: 10.1128/mcb.13.6.3698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Samuelson L. C., Wiebauer K., Gumucio D. L., Meisler M. H. Expression of the human amylase genes: recent origin of a salivary amylase promoter from an actin pseudogene. Nucleic Acids Res. 1988 Sep 12;16(17):8261–8276. doi: 10.1093/nar/16.17.8261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Samuelson L. C., Wiebauer K., Snow C. M., Meisler M. H. Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Mol Cell Biol. 1990 Jun;10(6):2513–2520. doi: 10.1128/mcb.10.6.2513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stavenhagen J. B., Robins D. M. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell. 1988 Oct 21;55(2):247–254. doi: 10.1016/0092-8674(88)90047-5. [DOI] [PubMed] [Google Scholar]
  33. Thiebaud P., Goodstein M., Calzone F. J., Thézé N., Britten R. J., Davidson E. H. Intersecting batteries of differentially expressed genes in the early sea urchin embryo. Genes Dev. 1990 Nov;4(11):1999–2010. doi: 10.1101/gad.4.11.1999. [DOI] [PubMed] [Google Scholar]
  34. Thorey I. S., Ceceña G., Reynolds W., Oshima R. G. Alu sequence involvement in transcriptional insulation of the keratin 18 gene in transgenic mice. Mol Cell Biol. 1993 Nov;13(11):6742–6751. doi: 10.1128/mcb.13.11.6742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ting C. N., Rosenberg M. P., Snow C. M., Samuelson L. C., Meisler M. H. Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Genes Dev. 1992 Aug;6(8):1457–1465. doi: 10.1101/gad.6.8.1457. [DOI] [PubMed] [Google Scholar]
  36. Tomilin N. V., Bozhkov V. M., Bradbury E. M., Schmid C. W. Differential binding of human nuclear proteins to Alu subfamilies. Nucleic Acids Res. 1992 Jun 25;20(12):2941–2945. doi: 10.1093/nar/20.12.2941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vansant G., Reynolds W. F. The consensus sequence of a major Alu subfamily contains a functional retinoic acid response element. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8229–8233. doi: 10.1073/pnas.92.18.8229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wu J., Grindlay G. J., Bushel P., Mendelsohn L., Allan M. Negative regulation of the human epsilon-globin gene by transcriptional interference: role of an Alu repetitive element. Mol Cell Biol. 1990 Mar;10(3):1209–1216. doi: 10.1128/mcb.10.3.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van den Berg C. W., Démant P., Aerts P. C., Van Dijk H. Slp is an essential component of an EDTA-resistant activation pathway of mouse complement. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10711–10715. doi: 10.1073/pnas.89.22.10711. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES