Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Sep;80(18):5776–5778. doi: 10.1073/pnas.80.18.5776

Shape recognition and inferior temporal neurons.

E L Schwartz, R Desimone, T D Albright, C G Gross
PMCID: PMC384342  PMID: 6577453

Abstract

Inferior temporal cortex plays an important role in shape recognition. To study the shape selectivity of single inferior temporal neurons, we recorded their responses to a set of shapes systematically varying in boundary curvature. Many inferior temporal neurons were selective for stimuli of specific boundary curvature and maintained this selectivity over changes in stimulus size or position. The method of describing boundary curvature was that of Fourier descriptors.

Full text

PDF
5776

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Desimone R., Fleming J., Gross C. G. Prestriate afferents to inferior temporal cortex: an HRP study. Brain Res. 1980 Feb 17;184(1):41–55. doi: 10.1016/0006-8993(80)90586-7. [DOI] [PubMed] [Google Scholar]
  2. Desimone R., Gross C. G. Visual areas in the temporal cortex of the macaque. Brain Res. 1979 Dec 14;178(2-3):363–380. doi: 10.1016/0006-8993(79)90699-1. [DOI] [PubMed] [Google Scholar]
  3. Fuster J. M., Jervey J. P. Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. J Neurosci. 1982 Mar;2(3):361–375. doi: 10.1523/JNEUROSCI.02-03-00361.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gross C. G., Rocha-Miranda C. E., Bender D. B. Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol. 1972 Jan;35(1):96–111. doi: 10.1152/jn.1972.35.1.96. [DOI] [PubMed] [Google Scholar]
  5. Rocha-Miranda C. E., Bender D. B., Gross C. G., Mishkin M. Visual activation of neurons in inferotemporal cortex depends on striate cortex and forebrain commissures. J Neurophysiol. 1975 May;38(3):475–491. doi: 10.1152/jn.1975.38.3.475. [DOI] [PubMed] [Google Scholar]
  6. Rolls E. T., Judge S. J., Sanghera M. K. Activity of neurones in the inferotemporal cortex of the alert monkey. Brain Res. 1977 Jul 15;130(2):229–238. doi: 10.1016/0006-8993(77)90272-4. [DOI] [PubMed] [Google Scholar]
  7. Sato T., Kawamura T., Iwai E. Responsiveness of inferotemporal single units to visual pattern stimuli in monkeys performing discrimination. Exp Brain Res. 1980 Feb;38(3):313–319. doi: 10.1007/BF00236651. [DOI] [PubMed] [Google Scholar]
  8. Schwartz E. L. Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vision Res. 1980;20(8):645–669. doi: 10.1016/0042-6989(80)90090-5. [DOI] [PubMed] [Google Scholar]
  9. Zeki S. M. Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J Physiol. 1978 Apr;277:273–290. doi: 10.1113/jphysiol.1978.sp012272. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES