Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Sep 3;93(18):9425–9430. doi: 10.1073/pnas.93.18.9425

A thermodynamic coupling mechanism for GroEL-mediated unfolding.

S Walter 1, G H Lorimer 1, F X Schmid 1
PMCID: PMC38444  PMID: 8790346

Abstract

Chaperonins prevent the aggregation of partially folded or misfolded forms of a protein and, thus, keep it competent for productive folding. It was suggested that GroEL, the chaperonin of Escherichia coli, exerts this function 1 unfolding such intermediates, presumably in a catalytic fashion. We investigated the kinetic mechanism of GroEL-induced protein unfolding by using a reduced and carbamidomethylated variant of RNase T1, RCAM-T1, as a substrate. RCAM-T1 cannot fold to completion, because the two disulfide bonds are missing, and it is, thus, a good model for long-lived folding intermediates. RCAM-T1 unfolds when GroEL is added, but GroEL does not change the microscopic rate constant of unfolding, ruling out that it catalyzes unfolding. GroEL unfolds RCAM-T1 because it binds with high affinity to the unfolded form of the protein and thereby shifts the overall equilibrium toward the unfolded state. GroEL can unfold a partially folded or misfolded intermediate by this thermodynamic coupling mechanism when the Gibbs free energy of the binding to GroEL is larger than the conformational stability of the intermediate and when the rate of its unfolding is high.

Full text

PDF
9425

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardwell J. C., Beckwith J. The bonds that tie: catalyzed disulfide bond formation. Cell. 1993 Sep 10;74(5):769–771. doi: 10.1016/0092-8674(93)90455-y. [DOI] [PubMed] [Google Scholar]
  2. Barrick D., Baldwin R. L. Three-state analysis of sperm whale apomyoglobin folding. Biochemistry. 1993 Apr 13;32(14):3790–3796. doi: 10.1021/bi00065a035. [DOI] [PubMed] [Google Scholar]
  3. Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature. 1994 Oct 13;371(6498):578–586. doi: 10.1038/371578a0. [DOI] [PubMed] [Google Scholar]
  4. Cheng M. Y., Hartl F. U., Martin J., Pollock R. A., Kalousek F., Neupert W., Hallberg E. M., Hallberg R. L., Horwich A. L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature. 1989 Feb 16;337(6208):620–625. doi: 10.1038/337620a0. [DOI] [PubMed] [Google Scholar]
  5. Fenton W. A., Kashi Y., Furtak K., Horwich A. L. Residues in chaperonin GroEL required for polypeptide binding and release. Nature. 1994 Oct 13;371(6498):614–619. doi: 10.1038/371614a0. [DOI] [PubMed] [Google Scholar]
  6. Fersht A. R. The sixth Datta Lecture. Protein folding and stability: the pathway of folding of barnase. FEBS Lett. 1993 Jun 28;325(1-2):5–16. doi: 10.1016/0014-5793(93)81405-o. [DOI] [PubMed] [Google Scholar]
  7. Frech C., Schmid F. X. Influence of protein conformation on disulfide bond formation in the oxidative folding of ribonuclease T1. J Mol Biol. 1995 Aug 4;251(1):135–149. doi: 10.1006/jmbi.1995.0421. [DOI] [PubMed] [Google Scholar]
  8. Frech C., Wunderlich M., Glockshuber R., Schmid F. X. Preferential binding of an unfolded protein to DsbA. EMBO J. 1996 Jan 15;15(2):392–398. [PMC free article] [PubMed] [Google Scholar]
  9. Freedman R. B., Hirst T. R., Tuite M. F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci. 1994 Aug;19(8):331–336. doi: 10.1016/0968-0004(94)90072-8. [DOI] [PubMed] [Google Scholar]
  10. Frieden C. Refolding of Escherichia coli dihydrofolate reductase: sequential formation of substrate binding sites. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4413–4416. doi: 10.1073/pnas.87.12.4413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garvey E. P., Matthews C. R. Effects of multiple replacements at a single position on the folding and stability of dihydrofolate reductase from Escherichia coli. Biochemistry. 1989 Mar 7;28(5):2083–2093. doi: 10.1021/bi00431a018. [DOI] [PubMed] [Google Scholar]
  12. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  13. Goloubinoff P., Christeller J. T., Gatenby A. A., Lorimer G. H. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfoleded state depends on two chaperonin proteins and Mg-ATP. Nature. 1989 Dec 21;342(6252):884–889. doi: 10.1038/342884a0. [DOI] [PubMed] [Google Scholar]
  14. Gray T. E., Fersht A. R. Refolding of barnase in the presence of GroE. J Mol Biol. 1993 Aug 20;232(4):1197–1207. doi: 10.1006/jmbi.1993.1471. [DOI] [PubMed] [Google Scholar]
  15. Heinemann U., Saenger W. Specific protein-nucleic acid recognition in ribonuclease T1-2'-guanylic acid complex: an X-ray study. Nature. 1982 Sep 2;299(5878):27–31. doi: 10.1038/299027a0. [DOI] [PubMed] [Google Scholar]
  16. Hendrick J. P., Hartl F. U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349–384. doi: 10.1146/annurev.bi.62.070193.002025. [DOI] [PubMed] [Google Scholar]
  17. Höll-Neugebauer B., Rudolph R., Schmidt M., Buchner J. Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of alpha-glucosidase from yeast. Biochemistry. 1991 Dec 17;30(50):11609–11614. doi: 10.1021/bi00114a001. [DOI] [PubMed] [Google Scholar]
  18. Ikai A., Tanford C. Kinetics of unfolding and refolding of proteins. I. Mathematical analysis. J Mol Biol. 1973 Jan 10;73(2):145–163. doi: 10.1016/0022-2836(73)90320-3. [DOI] [PubMed] [Google Scholar]
  19. Itzhaki L. S., Otzen D. E., Fersht A. R. Nature and consequences of GroEL-protein interactions. Biochemistry. 1995 Nov 7;34(44):14581–14587. doi: 10.1021/bi00044a037. [DOI] [PubMed] [Google Scholar]
  20. Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol. 1987;49(2-3):117–237. doi: 10.1016/0079-6107(87)90011-3. [DOI] [PubMed] [Google Scholar]
  21. Jaenicke R., Rudolph R., Heider I. Quaternary structure, subunit activity, and in vitro association of porcine mitochondrial malic dehydrogenase. Biochemistry. 1979 Apr 3;18(7):1217–1223. doi: 10.1021/bi00574a016. [DOI] [PubMed] [Google Scholar]
  22. Jentoft N., Dearborn D. G. Labeling of proteins by reductive methylation using sodium cyanoborohydride. J Biol Chem. 1979 Jun 10;254(11):4359–4365. [PubMed] [Google Scholar]
  23. Kiefhaber T., Grunert H. P., Hahn U., Schmid F. X. Folding of RNase T1 is decelerated by a specific tertiary contact in a folding intermediate. Proteins. 1992 Feb;12(2):171–179. doi: 10.1002/prot.340120210. [DOI] [PubMed] [Google Scholar]
  24. Kiefhaber T., Grunert H. P., Hahn U., Schmid F. X. Replacement of a cis proline simplifies the mechanism of ribonuclease T1 folding. Biochemistry. 1990 Jul 10;29(27):6475–6480. doi: 10.1021/bi00479a020. [DOI] [PubMed] [Google Scholar]
  25. Kiefhaber T., Schmid F. X. Kinetic coupling between protein folding and prolyl isomerization. II. Folding of ribonuclease A and ribonuclease T1. J Mol Biol. 1992 Mar 5;224(1):231–240. doi: 10.1016/0022-2836(92)90586-9. [DOI] [PubMed] [Google Scholar]
  26. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  27. Mayhew M., da Silva A. C., Martin J., Erdjument-Bromage H., Tempst P., Hartl F. U. Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature. 1996 Feb 1;379(6564):420–426. doi: 10.1038/379420a0. [DOI] [PubMed] [Google Scholar]
  28. Mayr L. M., Schmid F. X. A purification method for labile variants of ribonuclease T1. Protein Expr Purif. 1993 Feb;4(1):52–58. doi: 10.1006/prep.1993.1008. [DOI] [PubMed] [Google Scholar]
  29. Mayr L. M., Willbold D., Landt O., Schmid F. X. Role of the Cys 2-Cys 10 disulfide bond for the structure, stability, and folding kinetics of ribonuclease T1. Protein Sci. 1994 Feb;3(2):227–239. doi: 10.1002/pro.5560030207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mücke M., Schmid F. X. Folding mechanism of ribonuclease T1 in the absence of the disulfide bonds. Biochemistry. 1994 Dec 6;33(48):14608–14619. doi: 10.1021/bi00252a029. [DOI] [PubMed] [Google Scholar]
  31. Mücke M., Schmid F. X. Intact disulfide bonds decelerate the folding of ribonuclease T1. J Mol Biol. 1994 Jun 24;239(5):713–725. doi: 10.1006/jmbi.1994.1408. [DOI] [PubMed] [Google Scholar]
  32. Oobatake M., Takahashi S., Ooi T. Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts. J Biochem. 1979 Jul;86(1):55–63. [PubMed] [Google Scholar]
  33. Pace C. N., Grimsley G. R., Thomson J. A., Barnett B. J. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J Biol Chem. 1988 Aug 25;263(24):11820–11825. [PubMed] [Google Scholar]
  34. Ranson N. A., Dunster N. J., Burston S. G., Clarke A. R. Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds. J Mol Biol. 1995 Jul 28;250(5):581–586. doi: 10.1006/jmbi.1995.0399. [DOI] [PubMed] [Google Scholar]
  35. Rudolph R., Fuchs I., Jaenicke R. Reassociation of dimeric cytoplasmic malate dehydrogenase is determined by slow and very slow folding reactions. Biochemistry. 1986 Apr 8;25(7):1662–1669. doi: 10.1021/bi00355a033. [DOI] [PubMed] [Google Scholar]
  36. Santoro M. M., Bolen D. W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry. 1988 Oct 18;27(21):8063–8068. doi: 10.1021/bi00421a014. [DOI] [PubMed] [Google Scholar]
  37. Schmid F. X. Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. Annu Rev Biophys Biomol Struct. 1993;22:123–142. doi: 10.1146/annurev.bb.22.060193.001011. [DOI] [PubMed] [Google Scholar]
  38. Takahashi K., Uchida T., Egami F. Ribonuclease T1, Structure and function. Adv Biophys. 1970;1:53–98. [PubMed] [Google Scholar]
  39. Tanford C. Protein denaturation. Adv Protein Chem. 1968;23:121–282. doi: 10.1016/s0065-3233(08)60401-5. [DOI] [PubMed] [Google Scholar]
  40. Todd M. J., Lorimer G. H. Stability of the asymmetric Escherichia coli chaperonin complex. Guanidine chloride causes rapid dissociation. J Biol Chem. 1995 Mar 10;270(10):5388–5394. doi: 10.1074/jbc.270.10.5388. [DOI] [PubMed] [Google Scholar]
  41. Todd M. J., Viitanen P. V., Lorimer G. H. Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. Science. 1994 Jul 29;265(5172):659–666. doi: 10.1126/science.7913555. [DOI] [PubMed] [Google Scholar]
  42. Todd M. J., Viitanen P. V., Lorimer G. H. Hydrolysis of adenosine 5'-triphosphate by Escherichia coli GroEL: effects of GroES and potassium ion. Biochemistry. 1993 Aug 24;32(33):8560–8567. doi: 10.1021/bi00084a024. [DOI] [PubMed] [Google Scholar]
  43. Touchette N. A., Perry K. M., Matthews C. R. Folding of dihydrofolate reductase from Escherichia coli. Biochemistry. 1986 Sep 23;25(19):5445–5452. doi: 10.1021/bi00367a015. [DOI] [PubMed] [Google Scholar]
  44. Weissman J. S., Hohl C. M., Kovalenko O., Kashi Y., Chen S., Braig K., Saibil H. R., Fenton W. A., Horwich A. L. Mechanism of GroEL action: productive release of polypeptide from a sequestered position under GroES. Cell. 1995 Nov 17;83(4):577–587. doi: 10.1016/0092-8674(95)90098-5. [DOI] [PubMed] [Google Scholar]
  45. Weissman J. S., Kashi Y., Fenton W. A., Horwich A. L. GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell. 1994 Aug 26;78(4):693–702. doi: 10.1016/0092-8674(94)90533-9. [DOI] [PubMed] [Google Scholar]
  46. Weissman J. S., Kim P. S. Reexamination of the folding of BPTI: predominance of native intermediates. Science. 1991 Sep 20;253(5026):1386–1393. doi: 10.1126/science.1716783. [DOI] [PubMed] [Google Scholar]
  47. Zahn R., Perrett S., Stenberg G., Fersht A. R. Catalysis of amide proton exchange by the molecular chaperones GroEL and SecB. Science. 1996 Feb 2;271(5249):642–645. doi: 10.1126/science.271.5249.642. [DOI] [PubMed] [Google Scholar]
  48. Zettlmeissl G., Rudolph R., Jaenicke R. Reconstitution of lactic dehydrogenase. Noncovalent aggregation vs. reactivation. 1. Physical properties and kinetics of aggregation. Biochemistry. 1979 Dec 11;18(25):5567–5571. doi: 10.1021/bi00592a007. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES