Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Sep 3;93(18):9645–9650. doi: 10.1073/pnas.93.18.9645

Endothelin-B receptor is expressed by neural crest cells in the avian embryo.

V Nataf 1, L Lecoin 1, A Eichmann 1, N M Le Douarin 1
PMCID: PMC38482  PMID: 8790384

Abstract

Disruptions of the genes encoding endothelin 3 (EDN3) and its receptor endothelin-B receptor (EDNRB) in the mouse result in defects of two neural crest (NC)-derived lineages, the melanocytes, and the enteric nervous system. To assess the mechanisms through which the EDN3/EDNRB signaling pathway can selectively act on these NC derivatives, we have studied the spatiotemporal expression pattern of the EDNRB gene in the avian embryo, a model in which NC development has been extensively studied. For this purpose, we have cloned the quail homologue of the mammalian EDNRB cDNA. EDNRB transcripts are present in NC cells before and during their emigration from the neural tube at all levels of the neuraxis. At later developmental stages, the receptor remains abundantly expressed in the peripheral nervous system including the enteric nervous system. In a previous study, we have shown that EDN3 enhances dramatically the proliferation of NC cells when they are at the pluripotent stage. We propose that the selective effect of EDN3 or EDNRB gene inactivation is due to the fact that both melanocytes and enteric nervous system precursors have to colonize large embryonic areas (skin and bowel) from a relatively small population of precursors that have to expand considerably in number. It is therefore understandable that a deficit in one of the growth-promoting pathways of NC cells has more deleterious effects on long-range migrating cells than on the NC derivatives which develop close to the neural primordium like the sensory and sympathetic ganglia.

Full text

PDF
9645

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baroffio A., Dupin E., Le Douarin N. M. Clone-forming ability and differentiation potential of migratory neural crest cells. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5325–5329. doi: 10.1073/pnas.85.14.5325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baynash A. G., Hosoda K., Giaid A., Richardson J. A., Emoto N., Hammer R. E., Yanagisawa M. Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell. 1994 Dec 30;79(7):1277–1285. doi: 10.1016/0092-8674(94)90018-3. [DOI] [PubMed] [Google Scholar]
  3. Chabot B., Stephenson D. A., Chapman V. M., Besmer P., Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature. 1988 Sep 1;335(6185):88–89. doi: 10.1038/335088a0. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Copeland N. G., Gilbert D. J., Cho B. C., Donovan P. J., Jenkins N. A., Cosman D., Anderson D., Lyman S. D., Williams D. E. Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell. 1990 Oct 5;63(1):175–183. doi: 10.1016/0092-8674(90)90298-s. [DOI] [PubMed] [Google Scholar]
  6. Couly G. F., Coltey P. M., Le Douarin N. M. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development. 1993 Feb;117(2):409–429. doi: 10.1242/dev.117.2.409. [DOI] [PubMed] [Google Scholar]
  7. Couly G. F., Le Douarin N. M. Mapping of the early neural primordium in quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev Biol. 1987 Mar;120(1):198–214. doi: 10.1016/0012-1606(87)90118-7. [DOI] [PubMed] [Google Scholar]
  8. Crowley C., Spencer S. D., Nishimura M. C., Chen K. S., Pitts-Meek S., Armanini M. P., Ling L. H., McMahon S. B., Shelton D. L., Levinson A. D. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell. 1994 Mar 25;76(6):1001–1011. doi: 10.1016/0092-8674(94)90378-6. [DOI] [PubMed] [Google Scholar]
  9. Dupin E., Le Douarin N. M. Retinoic acid promotes the differentiation of adrenergic cells and melanocytes in quail neural crest cultures. Dev Biol. 1995 Apr;168(2):529–548. doi: 10.1006/dbio.1995.1100. [DOI] [PubMed] [Google Scholar]
  10. Eichmann A., Marcelle C., Bréant C., Le Douarin N. M. Two molecules related to the VEGF receptor are expressed in early endothelial cells during avian embryonic development. Mech Dev. 1993 Jul;42(1-2):33–48. doi: 10.1016/0925-4773(93)90096-g. [DOI] [PubMed] [Google Scholar]
  11. Erickson C. A., Duong T. D., Tosney K. W. Descriptive and experimental analysis of the dispersion of neural crest cells along the dorsolateral path and their entry into ectoderm in the chick embryo. Dev Biol. 1992 May;151(1):251–272. doi: 10.1016/0012-1606(92)90231-5. [DOI] [PubMed] [Google Scholar]
  12. Ernfors P., Lee K. F., Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature. 1994 Mar 10;368(6467):147–150. doi: 10.1038/368147a0. [DOI] [PubMed] [Google Scholar]
  13. Ernfors P., Lee K. F., Kucera J., Jaenisch R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell. 1994 May 20;77(4):503–512. doi: 10.1016/0092-8674(94)90213-5. [DOI] [PubMed] [Google Scholar]
  14. Fauquet M., Smith J., Ziller C., Le Douarin N. M. Differentiation of autonomic neuron precursors in vitro: cholinergic and adrenergic traits in cultured neural crest cells. J Neurosci. 1981 May;1(5):478–492. doi: 10.1523/JNEUROSCI.01-05-00478.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gariepy C. E., Cass D. T., Yanagisawa M. Null mutation of endothelin receptor type B gene in spotting lethal rats causes aganglionic megacolon and white coat color. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):867–872. doi: 10.1073/pnas.93.2.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henrique D., Adam J., Myat A., Chitnis A., Lewis J., Ish-Horowicz D. Expression of a Delta homologue in prospective neurons in the chick. Nature. 1995 Jun 29;375(6534):787–790. doi: 10.1038/375787a0. [DOI] [PubMed] [Google Scholar]
  17. Hosoda K., Hammer R. E., Richardson J. A., Baynash A. G., Cheung J. C., Giaid A., Yanagisawa M. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell. 1994 Dec 30;79(7):1267–1276. doi: 10.1016/0092-8674(94)90017-5. [DOI] [PubMed] [Google Scholar]
  18. Huang E., Nocka K., Beier D. R., Chu T. Y., Buck J., Lahm H. W., Wellner D., Leder P., Besmer P. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell. 1990 Oct 5;63(1):225–233. doi: 10.1016/0092-8674(90)90303-v. [DOI] [PubMed] [Google Scholar]
  19. Jacobs-Cohen R. J., Payette R. F., Gershon M. D., Rothman T. P. Inability of neural crest cells to colonize the presumptive aganglionic bowel of ls/ls mutant mice: requirement for a permissive microenvironment. J Comp Neurol. 1987 Jan 15;255(3):425–438. doi: 10.1002/cne.902550309. [DOI] [PubMed] [Google Scholar]
  20. Jones K. R., Fariñas I., Backus C., Reichardt L. F. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell. 1994 Mar 25;76(6):989–999. doi: 10.1016/0092-8674(94)90377-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kalcheim C., Barde Y. A., Thoenen H., Le Douarin N. M. In vivo effect of brain-derived neurotrophic factor on the survival of developing dorsal root ganglion cells. EMBO J. 1987 Oct;6(10):2871–2873. doi: 10.1002/j.1460-2075.1987.tb02589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kalcheim C. Basic fibroblast growth factor stimulates survival of nonneuronal cells developing from trunk neural crest. Dev Biol. 1989 Jul;134(1):1–10. doi: 10.1016/0012-1606(89)90072-9. [DOI] [PubMed] [Google Scholar]
  23. Kalcheim C., Carmeli C., Rosenthal A. Neurotrophin 3 is a mitogen for cultured neural crest cells. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1661–1665. doi: 10.1073/pnas.89.5.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kalcheim C., Gendreau M. Brain-derived neurotrophic factor stimulates survival and neuronal differentiation in cultured avian neural crest. Brain Res. 1988 Jun 1;469(1-2):79–86. doi: 10.1016/0165-3806(88)90171-x. [DOI] [PubMed] [Google Scholar]
  25. Kapur R. P., Sweetser D. A., Doggett B., Siebert J. R., Palmiter R. D. Intercellular signals downstream of endothelin receptor-B mediate colonization of the large intestine by enteric neuroblasts. Development. 1995 Nov;121(11):3787–3795. doi: 10.1242/dev.121.11.3787. [DOI] [PubMed] [Google Scholar]
  26. Kapur R. P., Yost C., Palmiter R. D. Aggregation chimeras demonstrate that the primary defect responsible for aganglionic megacolon in lethal spotted mice is not neuroblast autonomous. Development. 1993 Mar;117(3):993–999. doi: 10.1242/dev.117.3.993. [DOI] [PubMed] [Google Scholar]
  27. Klein R., Smeyne R. J., Wurst W., Long L. K., Auerbach B. A., Joyner A. L., Barbacid M. Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell. 1993 Oct 8;75(1):113–122. [PubMed] [Google Scholar]
  28. Kurihara Y., Kurihara H., Suzuki H., Kodama T., Maemura K., Nagai R., Oda H., Kuwaki T., Cao W. H., Kamada N. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature. 1994 Apr 21;368(6473):703–710. doi: 10.1038/368703a0. [DOI] [PubMed] [Google Scholar]
  29. Lahav R., Lecoin L., Ziller C., Nataf V., Carnahan J. F., Martin F. H., Le Douarin N. M. Effect of the Steel gene product on melanogenesis in avian neural crest cell cultures. Differentiation. 1994 Dec;58(2):133–139. doi: 10.1046/j.1432-0436.1995.5820133.x. [DOI] [PubMed] [Google Scholar]
  30. Lahav R., Ziller C., Dupin E., Le Douarin N. M. Endothelin 3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3892–3897. doi: 10.1073/pnas.93.9.3892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Le Douarin N. M., Dupin E., Ziller C. Genetic and epigenetic control in neural crest development. Curr Opin Genet Dev. 1994 Oct;4(5):685–695. doi: 10.1016/0959-437x(94)90135-p. [DOI] [PubMed] [Google Scholar]
  32. Le Douarin N. M., Teillet M. A. The migration of neural crest cells to the wall of the digestive tract in avian embryo. J Embryol Exp Morphol. 1973 Aug;30(1):31–48. [PubMed] [Google Scholar]
  33. Le Douarin N. M., Ziller C., Couly G. F. Patterning of neural crest derivatives in the avian embryo: in vivo and in vitro studies. Dev Biol. 1993 Sep;159(1):24–49. doi: 10.1006/dbio.1993.1219. [DOI] [PubMed] [Google Scholar]
  34. Le Douarin N. M., Ziller C. Plasticity in neural crest cell differentiation. Curr Opin Cell Biol. 1993 Dec;5(6):1036–1043. doi: 10.1016/0955-0674(93)90089-9. [DOI] [PubMed] [Google Scholar]
  35. Lecoin L., Lahav R., Martin F. H., Teillet M. A., Le Douarin N. M. Steel and c-kit in the development of avian melanocytes: a study of normally pigmented birds and of the hyperpigmented mutant silky fowl. Dev Dyn. 1995 May;203(1):106–118. doi: 10.1002/aja.1002030111. [DOI] [PubMed] [Google Scholar]
  36. Lee K. F., Li E., Huber L. J., Landis S. C., Sharpe A. H., Chao M. V., Jaenisch R. Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell. 1992 May 29;69(5):737–749. doi: 10.1016/0092-8674(92)90286-l. [DOI] [PubMed] [Google Scholar]
  37. Mayer T. C. Enhancement of melanocyte development from piebald neural crest by a favorable tissue environment. Dev Biol. 1977 Apr;56(2):255–262. doi: 10.1016/0012-1606(77)90268-8. [DOI] [PubMed] [Google Scholar]
  38. Mayer T. C. The development of piebald spotting in mice. Dev Biol. 1965 Jun;11(3):319–334. doi: 10.1016/0012-1606(65)90042-4. [DOI] [PubMed] [Google Scholar]
  39. Pavan W. J., Tilghman S. M. Piebald lethal (sl) acts early to disrupt the development of neural crest-derived melanocytes. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7159–7163. doi: 10.1073/pnas.91.15.7159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rothman T. P., Goldowitz D., Gershon M. D. Inhibition of migration of neural crest-derived cells by the abnormal mesenchyme of the presumptive aganglionic bowel of ls/ls mice: analysis with aggregation and interspecies chimeras. Dev Biol. 1993 Oct;159(2):559–573. doi: 10.1006/dbio.1993.1264. [DOI] [PubMed] [Google Scholar]
  41. Saito Y., Mizuno T., Itakura M., Suzuki Y., Ito T., Hagiwara H., Hirose S. Primary structure of bovine endothelin ETB receptor and identification of signal peptidase and metal proteinase cleavage sites. J Biol Chem. 1991 Dec 5;266(34):23433–23437. [PubMed] [Google Scholar]
  42. Sakamoto A., Yanagisawa M., Sakurai T., Takuwa Y., Yanagisawa H., Masaki T. Cloning and functional expression of human cDNA for the ETB endothelin receptor. Biochem Biophys Res Commun. 1991 Jul 31;178(2):656–663. doi: 10.1016/0006-291x(91)90158-4. [DOI] [PubMed] [Google Scholar]
  43. Sakurai T., Yanagisawa M., Takuwa Y., Miyazaki H., Kimura S., Goto K., Masaki T. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature. 1990 Dec 20;348(6303):732–735. doi: 10.1038/348732a0. [DOI] [PubMed] [Google Scholar]
  44. Shah N. M., Marchionni M. A., Isaacs I., Stroobant P., Anderson D. J. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell. 1994 May 6;77(3):349–360. doi: 10.1016/0092-8674(94)90150-3. [DOI] [PubMed] [Google Scholar]
  45. Sieber-Blum M. Role of the neurotrophic factors BDNF and NGF in the commitment of pluripotent neural crest cells. Neuron. 1991 Jun;6(6):949–955. doi: 10.1016/0896-6273(91)90235-r. [DOI] [PubMed] [Google Scholar]
  46. Smeyne R. J., Klein R., Schnapp A., Long L. K., Bryant S., Lewin A., Lira S. A., Barbacid M. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature. 1994 Mar 17;368(6468):246–249. doi: 10.1038/368246a0. [DOI] [PubMed] [Google Scholar]
  47. Steel K. P., Davidson D. R., Jackson I. J. TRP-2/DT, a new early melanoblast marker, shows that steel growth factor (c-kit ligand) is a survival factor. Development. 1992 Aug;115(4):1111–1119. doi: 10.1242/dev.115.4.1111. [DOI] [PubMed] [Google Scholar]
  48. Teillet M. A., Le Douarin N. La migration des cellules pigmentaires étudiée par la méthode des greffes hétérospécifiques de tube nerveux chez l'embryon d'oiseau. C R Acad Sci Hebd Seances Acad Sci D. 1970 Jun 22;270(25):3095–3098. [PubMed] [Google Scholar]
  49. Tucker G. C., Aoyama H., Lipinski M., Tursz T., Thiery J. P. Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from the neural primordium and on some leukocytes. Cell Differ. 1984 Aug;14(3):223–230. doi: 10.1016/0045-6039(84)90049-6. [DOI] [PubMed] [Google Scholar]
  50. Tucker G. C., Ciment G., Thiery J. P. Pathways of avian neural crest cell migration in the developing gut. Dev Biol. 1986 Aug;116(2):439–450. doi: 10.1016/0012-1606(86)90145-4. [DOI] [PubMed] [Google Scholar]
  51. Vincent M., Thiery J. P. A cell surface marker for neural crest and placodal cells: further evolution in peripheral and central nervous system. Dev Biol. 1984 Jun;103(2):468–481. doi: 10.1016/0012-1606(84)90334-8. [DOI] [PubMed] [Google Scholar]
  52. Zsebo K. M., Williams D. A., Geissler E. N., Broudy V. C., Martin F. H., Atkins H. L., Hsu R. Y., Birkett N. C., Okino K. H., Murdock D. C. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell. 1990 Oct 5;63(1):213–224. doi: 10.1016/0092-8674(90)90302-u. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES