Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Sep 3;93(18):9858–9863. doi: 10.1073/pnas.93.18.9858

Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons.

O I Buiakova 1, H Baker 1, J W Scott 1, A Farbman 1, R Kream 1, M Grillo 1, L Franzen 1, M Richman 1, L M Davis 1, S Abbondanzo 1, C L Stewart 1, F L Margolis 1
PMCID: PMC38519  PMID: 8790421

Abstract

Olfactory marker protein (OMP) is an abundant, phylogentically conserved, cytoplasmic protein of unknown function expressed almost exclusively in mature olfactory sensory neurons. To address its function, we generated OMP-deficient mice by gene targeting in embryonic stem cells. We report that these OMP-null mice are compromised in their ability to respond to odor stimull, providing insight to OMP function. The maximal electroolfactogram response of the olfactory neuroepithelium to several odorants was 20-40% smaller in the mutants compared with controls. In addition, the onset and recovery kinetics following isoamyl acetate stimulation are prolonged in the null mice. Furthermore, the ability of the mutants to respond to the second odor pulse of a pair is impaired, over a range of concentrations, compared with controls. These results imply that neural activity directed toward the olfactory bulb is also reduced. The bulbar phenotype observed in the OMP-null mouse is consistent with this hypothesis. Bulbar activity of tyrosine hydroxylase, the rate limiting enzyme of catecholamine biosynthesis, and content of the neuropeptide cholecystokinin are reduced by 65% and 50%, respectively. This similarity to postsynaptic changes in gene expression induced by peripheral olfactory deafferentation or naris blockade confirms that functional neural activity is reduced in both the olfactory neuroepithelium and the olfactory nerve projection to the bulb in the OMP-null mouse. These observations provide strong support for the conclusion that OMP is a novel modulatory component of the odor detection/signal transduction cascade.

Full text

PDF
9858

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker H., Grillo M., Margolis F. L. Biochemical and immunocytochemical characterization of olfactory marker protein in the rodent central nervous system. J Comp Neurol. 1989 Jul 8;285(2):246–261. doi: 10.1002/cne.902850207. [DOI] [PubMed] [Google Scholar]
  2. Baker H., Morel K., Stone D. M., Maruniak J. A. Adult naris closure profoundly reduces tyrosine hydroxylase expression in mouse olfactory bulb. Brain Res. 1993 Jun 18;614(1-2):109–116. doi: 10.1016/0006-8993(93)91023-l. [DOI] [PubMed] [Google Scholar]
  3. Baker H., Towle A. C., Margolis F. L. Differential afferent regulation of dopaminergic and GABAergic neurons in the mouse main olfactory bulb. Brain Res. 1988 May 31;450(1-2):69–80. doi: 10.1016/0006-8993(88)91545-4. [DOI] [PubMed] [Google Scholar]
  4. Biffo S., Grillo M., Margolis F. L. Cellular localization of carnosine-like and anserine-like immunoreactivities in rodent and avian central nervous system. Neuroscience. 1990;35(3):637–651. doi: 10.1016/0306-4522(90)90335-2. [DOI] [PubMed] [Google Scholar]
  5. Blass E. M., Teicher M. H. Suckling. Science. 1980 Oct 3;210(4465):15–22. doi: 10.1126/science.6997992. [DOI] [PubMed] [Google Scholar]
  6. Buck L., Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991 Apr 5;65(1):175–187. doi: 10.1016/0092-8674(91)90418-x. [DOI] [PubMed] [Google Scholar]
  7. Buiakova O. I., Krishna N. S., Getchell T. V., Margolis F. L. Human and rodent OMP genes: conservation of structural and regulatory motifs and cellular localization. Genomics. 1994 Apr;20(3):452–462. doi: 10.1006/geno.1994.1200. [DOI] [PubMed] [Google Scholar]
  8. Chess A., Simon I., Cedar H., Axel R. Allelic inactivation regulates olfactory receptor gene expression. Cell. 1994 Sep 9;78(5):823–834. doi: 10.1016/s0092-8674(94)90562-2. [DOI] [PubMed] [Google Scholar]
  9. Doty R. L. Odor-guided behavior in mammals. Experientia. 1986 Mar 15;42(3):257–271. doi: 10.1007/BF01942506. [DOI] [PubMed] [Google Scholar]
  10. Ezeh P. I., Davis L. M., Scott J. W. Regional distribution of rat electroolfactogram. J Neurophysiol. 1995 Jun;73(6):2207–2220. doi: 10.1152/jn.1995.73.6.2207. [DOI] [PubMed] [Google Scholar]
  11. Harding J. W., Getchell T. V., Margolis F. L. Denervation of the primary olfactory pathway in mice. V. Long-term effect of intranasal ZnSO4 irrigation on behavior, biochemistry and morphology. Brain Res. 1978 Jan 27;140(2):271–285. doi: 10.1016/0006-8993(78)90460-2. [DOI] [PubMed] [Google Scholar]
  12. Henegar J. R., Maruniak J. A. Quantification of the effects of long-term unilateral naris closure on the olfactory bulbs of adult mice. Brain Res. 1991 Dec 24;568(1-2):230–234. doi: 10.1016/0006-8993(91)91402-m. [DOI] [PubMed] [Google Scholar]
  13. Ivanova T. T., Caprio J. Odorant receptors activated by amino acids in sensory neurons of the channel catfish Ictalurus punctatus. J Gen Physiol. 1993 Dec;102(6):1085–1105. doi: 10.1085/jgp.102.6.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Joh T. H., Geghman C., Reis D. Immunochemical demonstration of increased accumulation of tyrosine hydroxylase protein in sympathetic ganglia and adrenal medulla elicited by reserpine. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2767–2771. doi: 10.1073/pnas.70.10.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kudrycki K., Stein-Izsak C., Behn C., Grillo M., Akeson R., Margolis F. L. Olf-1-binding site: characterization of an olfactory neuron-specific promoter motif. Mol Cell Biol. 1993 May;13(5):3002–3014. doi: 10.1128/mcb.13.5.3002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lau M. M., Stewart C. E., Liu Z., Bhatt H., Rotwein P., Stewart C. L. Loss of the imprinted IGF2/cation-independent mannose 6-phosphate receptor results in fetal overgrowth and perinatal lethality. Genes Dev. 1994 Dec 15;8(24):2953–2963. doi: 10.1101/gad.8.24.2953. [DOI] [PubMed] [Google Scholar]
  17. Liman E. R., Buck L. B. A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. Neuron. 1994 Sep;13(3):611–621. doi: 10.1016/0896-6273(94)90029-9. [DOI] [PubMed] [Google Scholar]
  18. Menco B. P. Electron-microscopic demonstration of olfactory-marker protein with protein G-gold in freeze-substituted, Lowicryl K11M-embedded rat olfactory-receptor cells. Cell Tissue Res. 1989;256(2):275–281. doi: 10.1007/BF00218884. [DOI] [PubMed] [Google Scholar]
  19. Raming K., Krieger J., Strotmann J., Boekhoff I., Kubick S., Baumstark C., Breer H. Cloning and expression of odorant receptors. Nature. 1993 Jan 28;361(6410):353–356. doi: 10.1038/361353a0. [DOI] [PubMed] [Google Scholar]
  20. Reed R. R. Signaling pathways in odorant detection. Neuron. 1992 Feb;8(2):205–209. doi: 10.1016/0896-6273(92)90287-n. [DOI] [PubMed] [Google Scholar]
  21. Ressler K. J., Sullivan S. L., Buck L. B. A molecular dissection of spatial patterning in the olfactory system. Curr Opin Neurobiol. 1994 Aug;4(4):588–596. doi: 10.1016/0959-4388(94)90061-2. [DOI] [PubMed] [Google Scholar]
  22. Shepherd G. M. Discrimination of molecular signals by the olfactory receptor neuron. Neuron. 1994 Oct;13(4):771–790. doi: 10.1016/0896-6273(94)90245-3. [DOI] [PubMed] [Google Scholar]
  23. Shimonaka H., Marchand J. E., Connelly C. S., Kream R. M. Development of an antiserum to the midportion of substance P: applications for biochemical and anatomical studies of substance P-related peptide species in CNS tissues. J Neurochem. 1992 Jul;59(1):81–92. doi: 10.1111/j.1471-4159.1992.tb08878.x. [DOI] [PubMed] [Google Scholar]
  24. Sicard G., Holley A. Receptor cell responses to odorants: similarities and differences among odorants. Brain Res. 1984 Feb 6;292(2):283–296. doi: 10.1016/0006-8993(84)90764-9. [DOI] [PubMed] [Google Scholar]
  25. Verhaagen J., Oestreicher A. B., Gispen W. H., Margolis F. L. The expression of the growth associated protein B50/GAP43 in the olfactory system of neonatal and adult rats. J Neurosci. 1989 Feb;9(2):683–691. doi: 10.1523/JNEUROSCI.09-02-00683.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES