Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Sep 3;93(18):9960–9965. doi: 10.1073/pnas.93.18.9960

Chronic control of high blood pressure in the spontaneously hypertensive rat by delivery of angiotensin type 1 receptor antisense.

S N Iyer 1, D Lu 1, M J Katovich 1, M K Raizada 1
PMCID: PMC38537  PMID: 8790439

Abstract

The renin-angiotensin system plays a crucial role in the development and establishment of the hypertensive state in the spontaneously hypertensive (SH) rat. Interruption of this system's activity by pharmacological means results in the lowering of blood pressure (BP) and control of hypertension. However, such means are temporary and require the continuous use of drugs for the control of this pathophysiological state. Our objective in this investigation was to determine if a virally mediated gene-transfer approach using angiotensin type 1 receptor antisense (AT1R-AS) could be used to control hypertension on a long-term basis in the SH rat model of human essential hypertension. Injection of viral particles containing AT1R-AS (LNSV-AT1R-AS) in 5-day-old rats resulted in a lowering of BP exclusively in the SH rat and not in the Wistar Kyoto normotensive control. A maximal anti-hypertensive response of 33 +/- 5 mmHg was observed, was maintained throughout development, and still persisted 3 months after administration of LNSV-AT1R-AS. The lowering of BP was associated with the expression of AT1R-AS transcript and decreases in AT1-receptor in many peripheral angiotensin II target tissues such as mesenteric artery, adrenal gland, heart, and kidney. Attenuation of angiotensin II-stimulated physiological actions such as contraction of aortic rings and increase in BP was also observed in the LNSV-AT1R-AS-treated SH rat. These observations show that a single injection of LNSV-AT1R-AS normalizes BP in the SH rat on a long-term basis. They suggest that such a gene-transfer strategy can be successfully used to control the development of hypertension on a permanent basis.

Full text

PDF
9960

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann J., Wagner J., Haufe C., Wystrychowski A., Ciechanowicz A., Ganten D. Modulation of blood pressure and the renin-angiotensin system in transgenic and spontaneously hypertensive rats afer ovariectomy. J Hypertens Suppl. 1993 Dec;11(5):S226–S227. [PubMed] [Google Scholar]
  2. Balla T., Baukal A. J., Eng S., Catt K. J. Angiotensin II receptor subtypes and biological responses in the adrenal cortex and medulla. Mol Pharmacol. 1991 Sep;40(3):401–406. [PubMed] [Google Scholar]
  3. Berecek K. H., Kirk K. A., Nagahama S., Oparil S. Sympathetic function in spontaneously hypertensive rats after chronic administration of captopril. Am J Physiol. 1987 Apr;252(4 Pt 2):H796–H806. doi: 10.1152/ajpheart.1987.252.4.H796. [DOI] [PubMed] [Google Scholar]
  4. Berecek K. H., Zhang L. Biochemistry and cell biology of angiotensin-converting enzyme and converting enzyme inhibitors. Adv Exp Med Biol. 1995;377:141–168. doi: 10.1007/978-1-4899-0952-7_9. [DOI] [PubMed] [Google Scholar]
  5. Bonnardeaux A., Davies E., Jeunemaitre X., Féry I., Charru A., Clauser E., Tiret L., Cambien F., Corvol P., Soubrier F. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension. 1994 Jul;24(1):63–69. doi: 10.1161/01.hyp.24.1.63. [DOI] [PubMed] [Google Scholar]
  6. Goldberg M. R., Bradstreet T. E., McWilliams E. J., Tanaka W. K., Lipert S., Bjornsson T. D., Waldman S. A., Osborne B., Pivadori L., Lewis G. Biochemical effects of losartan, a nonpeptide angiotensin II receptor antagonist, on the renin-angiotensin-aldosterone system in hypertensive patients. Hypertension. 1995 Jan;25(1):37–46. doi: 10.1161/01.hyp.25.1.37. [DOI] [PubMed] [Google Scholar]
  7. Gyurko R., Wielbo D., Phillips M. I. Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul Pept. 1993 Dec 10;49(2):167–174. doi: 10.1016/0167-0115(93)90438-e. [DOI] [PubMed] [Google Scholar]
  8. Harrap S. B., Van der Merwe W. M., Griffin S. A., Macpherson F., Lever A. F. Brief angiotensin converting enzyme inhibitor treatment in young spontaneously hypertensive rats reduces blood pressure long-term. Hypertension. 1990 Dec;16(6):603–614. doi: 10.1161/01.hyp.16.6.603. [DOI] [PubMed] [Google Scholar]
  9. Iyer S. N., Katovich M. J. Vascular reactivity to phenylephrine and angiotensin II in hypertensive rats associated with insulin resistance. Clin Exp Hypertens. 1996 Feb;18(2):227–242. doi: 10.3109/10641969609081766. [DOI] [PubMed] [Google Scholar]
  10. Kang P. M., Landau A. J., Eberhardt R. T., Frishman W. H. Angiotensin II receptor antagonists: a new approach to blockade of the renin-angiotensin system. Am Heart J. 1994 May;127(5):1388–1401. doi: 10.1016/0002-8703(94)90061-2. [DOI] [PubMed] [Google Scholar]
  11. Kawano Y., Yoshida K., Matsuoka H., Omae T. Chronic effects of central and systemic administration of losartan on blood pressure and baroreceptor reflex in spontaneously hypertensive rats. Am J Hypertens. 1994 Jun;7(6):536–542. doi: 10.1093/ajh/7.6.536. [DOI] [PubMed] [Google Scholar]
  12. Lu D., Raizada M. K. Delivery of angiotensin II type 1 receptor antisense inhibits angiotensin action in neurons from hypertensive rat brain. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2914–2918. doi: 10.1073/pnas.92.7.2914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lu D., Sumners C., Raizada M. K. Regulation of angiotensin II type 1 receptor mRNA in neuronal cultures of normotensive and spontaneously hypertensive rat brains by phorbol esters and forskolin. J Neurochem. 1994 Jun;62(6):2079–2084. doi: 10.1046/j.1471-4159.1994.62062079.x. [DOI] [PubMed] [Google Scholar]
  14. Lu D., Yu K., Paddy M. R., Rowland N. E., Raizada M. K. Regulation of norepinephrine transport system by angiotensin II in neuronal cultures of normotensive and spontaneously hypertensive rat brains. Endocrinology. 1996 Feb;137(2):763–772. doi: 10.1210/endo.137.2.8593828. [DOI] [PubMed] [Google Scholar]
  15. Lu D., Yu K., Raizada M. K. Retrovirus-mediated transfer of an angiotensin type I receptor (AT1-R) antisense sequence decreases AT1-Rs and angiotensin II action in astroglial and neuronal cells in primary cultures from the brain. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):1162–1166. doi: 10.1073/pnas.92.4.1162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mann J. F., Phillips M. I., Dietz R., Haebara H., Ganten D. Effects of central and peripheral angiotensin blockade in hypertensive rats. Am J Physiol. 1978 May;234(5):H629–H637. doi: 10.1152/ajpheart.1978.234.5.H629. [DOI] [PubMed] [Google Scholar]
  17. Phillips M. I. Functions of angiotensin in the central nervous system. Annu Rev Physiol. 1987;49:413–435. doi: 10.1146/annurev.ph.49.030187.002213. [DOI] [PubMed] [Google Scholar]
  18. Phillips M. I., Wielbo D., Gyurko R. Antisense inhibition of hypertension: a new strategy for renin-angiotensin candidate genes. Kidney Int. 1994 Dec;46(6):1554–1556. doi: 10.1038/ki.1994.444. [DOI] [PubMed] [Google Scholar]
  19. Raizada M. K., Lu D., Tang W., Kurian P., Sumners C. Increased angiotensin II type-1 receptor gene expression in neuronal cultures from spontaneously hypertensive rats. Endocrinology. 1993 Apr;132(4):1715–1722. doi: 10.1210/endo.132.4.8462471. [DOI] [PubMed] [Google Scholar]
  20. Raizada M. K., Sumners C., Lu D. Angiotensin II type 1 receptor mRNA levels in the brains of normotensive and spontaneously hypertensive rats. J Neurochem. 1993 May;60(5):1949–1952. doi: 10.1111/j.1471-4159.1993.tb13426.x. [DOI] [PubMed] [Google Scholar]
  21. Rowe B. P., Saylor D. L., Speth R. C., Absher D. R. Angiotensin-(1-7) binding at angiotensin II receptors in the rat brain. Regul Pept. 1995 Apr 14;56(2-3):139–146. doi: 10.1016/0167-0115(95)00010-9. [DOI] [PubMed] [Google Scholar]
  22. Rowe B. P., Saylor D. L., Speth R. C. Analysis of angiotensin II receptor subtypes in individual rat brain nuclei. Neuroendocrinology. 1992 May;55(5):563–573. doi: 10.1159/000126177. [DOI] [PubMed] [Google Scholar]
  23. Sakai R. R., He P. F., Yang X. D., Ma L. Y., Guo Y. F., Reilly J. J., Moga C. N., Fluharty S. J. Intracerebroventricular administration of AT1 receptor antisense oligonucleotides inhibits the behavioral actions of angiotensin II. J Neurochem. 1994 May;62(5):2053–2056. doi: 10.1046/j.1471-4159.1994.62052053.x. [DOI] [PubMed] [Google Scholar]
  24. Sakai R. R., Ma L. Y., He P. F., Fluharty S. J. Intracerebroventricular administration of angiotensin type 1 (AT1) receptor antisense oligonucleotides attenuate thirst in the rat. Regul Pept. 1995 Oct 20;59(2):183–192. doi: 10.1016/0167-0115(95)00111-n. [DOI] [PubMed] [Google Scholar]
  25. Soltis E. E., Jewell A. L., Dwoskin L. P., Cassis L. A. Acute and chronic effects of losartan (DuP 753) on blood pressure and vascular reactivity in normotensive rats. Clin Exp Hypertens. 1993 Jan;15(1):171–184. doi: 10.3109/10641969309041618. [DOI] [PubMed] [Google Scholar]
  26. Song K., Kurobe Y., Kanehara H., Okunishi H., Wada T., Inada Y., Nishikawa K., Miyazaki M. Quantitative localization of angiotensin II receptor subtypes in spontaneously hypertensive rats. Blood Press Suppl. 1994;5:21–26. [PubMed] [Google Scholar]
  27. Sumners C., Raizada M. K., Kang J., Lu D., Posner P. Receptor-mediated effects of angiotensin II on neurons. Front Neuroendocrinol. 1994 Sep;15(3):203–230. doi: 10.1006/frne.1994.1009. [DOI] [PubMed] [Google Scholar]
  28. Timmermans P. B., Wong P. C., Chiu A. T., Herblin W. F., Benfield P., Carini D. J., Lee R. J., Wexler R. R., Saye J. A., Smith R. D. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993 Jun;45(2):205–251. [PubMed] [Google Scholar]
  29. Tomita N., Morishita R., Higaki J., Aoki M., Nakamura Y., Mikami H., Fukamizu A., Murakami K., Kaneda Y., Ogihara T. Transient decrease in high blood pressure by in vivo transfer of antisense oligodeoxynucleotides against rat angiotensinogen. Hypertension. 1995 Jul;26(1):131–136. doi: 10.1161/01.hyp.26.1.131. [DOI] [PubMed] [Google Scholar]
  30. Unger T., Rettig R. Development of genetic hypertension. Is there a "critical phase"? Hypertension. 1990 Dec;16(6):615–616. doi: 10.1161/01.hyp.16.6.615. [DOI] [PubMed] [Google Scholar]
  31. Wu J. N., Berecek K. H. Prevention of genetic hypertension by early treatment of spontaneously hypertensive rats with the angiotensin converting enzyme inhibitor captopril. Hypertension. 1993 Aug;22(2):139–146. doi: 10.1161/01.hyp.22.2.139. [DOI] [PubMed] [Google Scholar]
  32. Yang H., Lu D., Raizada M. K. Lack of cross talk between alpha1-adrenergic and angiotensin type 1 receptors in neurons of spontaneously hypertensive rat brain. Hypertension. 1996 Jun;27(6):1277–1283. doi: 10.1161/01.hyp.27.6.1277. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES