Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Aug 20;93(17):8809–8815. doi: 10.1073/pnas.93.17.8809

Information processing in the human brain: magnetoencephalographic approach.

O V Lounasmaa 1, M Hämäläinen 1, R Hari 1, R Salmelin 1
PMCID: PMC38548  PMID: 8799107

Abstract

Rapid progress in effective methods to image brain functions has revolutionized neuroscience. It is now possible to study noninvasively in humans neural processes that were previously only accessible in experimental animals and in brain-injured patients. In this endeavor, positron emission tomography has been the leader, but the superconducting quantum interference device-based magnetoencephalography (MEG) is gaining a firm role, too. With the advent of instruments covering the whole scalp, MEG, typically with 5-mm spatial and 1-ms temporal resolution, allows neuroscientists to track cortical functions accurately in time and space. We present five representative examples of recent MEG studies in our laboratory that demonstrate the usefulness of whole-head magnetoencephalography in investigations of spatiotemporal dynamics of cortical signal processing.

Full text

PDF
8809

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrew E. R. Nuclear magnetic resonance and the brain. Brain Topogr. 1992 Winter;5(2):129–133. doi: 10.1007/BF01129040. [DOI] [PubMed] [Google Scholar]
  2. Belliveau J. W., Kennedy D. N., Jr, McKinstry R. C., Buchbinder B. R., Weisskoff R. M., Cohen M. S., Vevea J. M., Brady T. J., Rosen B. R. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991 Nov 1;254(5032):716–719. doi: 10.1126/science.1948051. [DOI] [PubMed] [Google Scholar]
  3. Cohen D. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science. 1972 Feb 11;175(4022):664–666. doi: 10.1126/science.175.4022.664. [DOI] [PubMed] [Google Scholar]
  4. Conway B. A., Halliday D. M., Farmer S. F., Shahani U., Maas P., Weir A. I., Rosenberg J. R. Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol. 1995 Dec 15;489(Pt 3):917–924. doi: 10.1113/jphysiol.1995.sp021104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curio G., Drung D., Koch H., Müller W., Steinhoff U., Trahms L., Shen Y. Q., Vase P., Freltoft T. Magnetometry of evoked fields from human peripheral nerve, brachial plexus and primary somatosensory cortex using a liquid nitrogen cooled superconducting quantum interference device. Neurosci Lett. 1996 Mar 15;206(2-3):204–206. doi: 10.1016/s0304-3940(96)12456-3. [DOI] [PubMed] [Google Scholar]
  6. Forss N., Jousmäki V., Hari R. Interaction between afferent input from fingers in human somatosensory cortex. Brain Res. 1995 Jul 10;685(1-2):68–76. doi: 10.1016/0006-8993(95)00424-o. [DOI] [PubMed] [Google Scholar]
  7. Forss N., Mäkelä J. P., Keränen T., Hari R. Trigeminally triggered epileptic hemifacial convulsions. Neuroreport. 1995 Apr 19;6(6):918–920. doi: 10.1097/00001756-199504190-00023. [DOI] [PubMed] [Google Scholar]
  8. Gevins A., Leong H., Smith M. E., Le J., Du R. Mapping cognitive brain function with modern high-resolution electroencephalography. Trends Neurosci. 1995 Oct;18(10):429–436. doi: 10.1016/0166-2236(95)94489-r. [DOI] [PubMed] [Google Scholar]
  9. Hounsfield G. N. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973 Dec;46(552):1016–1022. doi: 10.1259/0007-1285-46-552-1016. [DOI] [PubMed] [Google Scholar]
  10. Lammertsma A. A. Positron emission tomography. Brain Topogr. 1992 Winter;5(2):113–117. doi: 10.1007/BF01129038. [DOI] [PubMed] [Google Scholar]
  11. McCarthy G., Blamire A. M., Rothman D. L., Gruetter R., Shulman R. G. Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4952–4956. doi: 10.1073/pnas.90.11.4952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McEvoy L., Hari R., Imada T., Sams M. Human auditory cortical mechanisms of sound lateralization: II. Interaural time differences at sound onset. Hear Res. 1993 May;67(1-2):98–109. doi: 10.1016/0378-5955(93)90237-u. [DOI] [PubMed] [Google Scholar]
  13. Middlebrooks J. C., Clock A. E., Xu L., Green D. M. A panoramic code for sound location by cortical neurons. Science. 1994 May 6;264(5160):842–844. doi: 10.1126/science.8171339. [DOI] [PubMed] [Google Scholar]
  14. PENFIELD W., PEROT P. THE BRAIN'S RECORD OF AUDITORY AND VISUAL EXPERIENCE. A FINAL SUMMARY AND DISCUSSION. Brain. 1963 Dec;86:595–696. doi: 10.1093/brain/86.4.595. [DOI] [PubMed] [Google Scholar]
  15. Paetau R., Kajola M., Karhu J., Nousiainen U., Partanen J., Tiihonen J., Vapalahti M., Hari R. Magnetoencephalographic localization of epileptic cortex--impact on surgical treatment. Ann Neurol. 1992 Jul;32(1):106–109. doi: 10.1002/ana.410320119. [DOI] [PubMed] [Google Scholar]
  16. Pfurtscheller G. Central beta rhythm during sensorimotor activities in man. Electroencephalogr Clin Neurophysiol. 1981 Mar;51(3):253–264. doi: 10.1016/0013-4694(81)90139-5. [DOI] [PubMed] [Google Scholar]
  17. Salmelin R., Hari R. Characterization of spontaneous MEG rhythms in healthy adults. Electroencephalogr Clin Neurophysiol. 1994 Oct;91(4):237–248. doi: 10.1016/0013-4694(94)90187-2. [DOI] [PubMed] [Google Scholar]
  18. Salmelin R., Hari R., Lounasmaa O. V., Sams M. Dynamics of brain activation during picture naming. Nature. 1994 Mar 31;368(6470):463–465. doi: 10.1038/368463a0. [DOI] [PubMed] [Google Scholar]
  19. Salmelin R., Hari R. Spatiotemporal characteristics of sensorimotor neuromagnetic rhythms related to thumb movement. Neuroscience. 1994 May;60(2):537–550. doi: 10.1016/0306-4522(94)90263-1. [DOI] [PubMed] [Google Scholar]
  20. Salmelin R., Hämäläinen M., Kajola M., Hari R. Functional segregation of movement-related rhythmic activity in the human brain. Neuroimage. 1995 Dec;2(4):237–243. doi: 10.1006/nimg.1995.1031. [DOI] [PubMed] [Google Scholar]
  21. Schnitzler A., Salmelin R., Salenius S., Jousmäki V., Hari R. Tactile information from the human hand reaches the ipsilateral primary somatosensory cortex. Neurosci Lett. 1995 Nov 10;200(1):25–28. doi: 10.1016/0304-3940(95)12065-c. [DOI] [PubMed] [Google Scholar]
  22. Sereno M. I., Dale A. M., Reppas J. B., Kwong K. K., Belliveau J. W., Brady T. J., Rosen B. R., Tootell R. B. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science. 1995 May 12;268(5212):889–893. doi: 10.1126/science.7754376. [DOI] [PubMed] [Google Scholar]
  23. Sutherling W. W., Barth D. S. Neocortical propagation in temporal lobe spike foci on magnetoencephalography and electroencephalography. Ann Neurol. 1989 Apr;25(4):373–381. doi: 10.1002/ana.410250409. [DOI] [PubMed] [Google Scholar]
  24. Ter-Pogossian M. M., Phelps M. E., Hoffman E. J., Mullani N. A. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975 Jan;114(1):89–98. doi: 10.1148/114.1.89. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES