Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Aug;83(15):5382–5386. doi: 10.1073/pnas.83.15.5382

5-Azido-2'-deoxyuridine 5'-triphosphate: a photoaffinity-labeling reagent and tool for the enzymatic synthesis of photoactive DNA.

R K Evans, J D Johnson, B E Haley
PMCID: PMC386290  PMID: 3461438

Abstract

We have synthesized the photoactive deoxyuridine nucleotide 5-azido-2'-deoxyuridine 5'-triphosphate (5-N3dUTP) and used it to synthesize light-sensitive DNA by enzymatic incorporation. In the absence of ultraviolet light, 5-N3dUTP is a substrate for Escherichia coli DNA polymerase I. In in vitro DNA synthesis reactions using bacteriophage M13 single-stranded DNA as the template and 5-N3dUTP in place of dTTP, a photoactive complementary strand was synthesized by DNA polymerase I. The complementary strand was not synthesized when the 5-N3dUTP was substituted for dCTP or when it was exposed to ultraviolet light prior to the addition of DNA polymerase I. Using a synthetic lac operator template of 26 bases and a 15-base primer, we generated a photoactive 26-base-pair lac operator by enzymatically incorporating 5-N3dUMP with DNA polymerase I. Crosslinking of this photoactive DNA fragment to lac repressor was totally dependent on the presence of UV light and was reduced 78% by 150 microM isopropyl beta-D-thiogalactoside. Under the same conditions no crosslinking to lac repressor was observed using a nonphotoactive 26-base-pair lac operator. Photoactivatable deoxyuridine analogs have potential application as reagents to crosslink DNA binding proteins to 5-azidouracil-containing DNA and as active-site-directed photoaffinity labelling reagents.

Full text

PDF
5382

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham K. I., Haley B., Modak M. J. Biochemistry of terminal deoxynucleotidyltransferase: characterization and properties of photoaffinity labeling with 8-azidoadenosine 5'-triphosphate. Biochemistry. 1983 Aug 30;22(18):4197–4203. doi: 10.1021/bi00287a006. [DOI] [PubMed] [Google Scholar]
  2. Barbier B., Charlier M., Maurizot J. C. Photochemical cross-linking of lac repressor to nonoperator 5-bromouracil-substituted DNA. Biochemistry. 1984 Jun 19;23(13):2933–2939. doi: 10.1021/bi00308a013. [DOI] [PubMed] [Google Scholar]
  3. Bayley H., Knowles J. R. Photoaffinity labeling. Methods Enzymol. 1977;46:69–114. doi: 10.1016/s0076-6879(77)46012-9. [DOI] [PubMed] [Google Scholar]
  4. Bessman M. J., Lehman I. R., Adler J., Zimmerman S. B., Simms E. S., Kornberg A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. III. THE INCORPORATION OF PYRIMIDINE AND PURINE ANALOGUES INTO DEOXYRIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):633–640. doi: 10.1073/pnas.44.7.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Czarnecki J., Geahlen R., Haley B. Synthesis and use of azido photoaffinity analogs of adenine and guanine nucleotides. Methods Enzymol. 1979;56:642–653. doi: 10.1016/0076-6879(79)56061-3. [DOI] [PubMed] [Google Scholar]
  6. Englund P. T., Huberman J. A., Jovin T. M., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. XXX. Binding of triphosphates to deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):3038–3044. [PubMed] [Google Scholar]
  7. Gilbert W., Müller-Hill B. Isolation of the lac repressor. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1891–1898. doi: 10.1073/pnas.56.6.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haley B. E. Development and utilization of 8-azidopurine nucleotide photoaffinity probes. Fed Proc. 1983 Aug;42(11):2831–2836. [PubMed] [Google Scholar]
  10. Kapuler A. M., Spiegelman S. Q-beta-replicase and E. coli transcriptase: requirements for substrate selection as revealed by a study of base analogs. Proc Natl Acad Sci U S A. 1970 Jun;66(2):539–546. doi: 10.1073/pnas.66.2.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kapuler A. M., Ward D. C., Mendelsohn N., Klett H., Acs G. Utilization of substrate analogs by mengovirus induced RNA polymerase. Virology. 1969 Apr;37(4):701–706. doi: 10.1016/0042-6822(69)90295-5. [DOI] [PubMed] [Google Scholar]
  12. Knight K. L., McEntee K. Covalent modification of the recA protein from Escherichia coli with the photoaffinity label 8-azidoadenosine 5'-triphosphate. J Biol Chem. 1985 Jan 25;260(2):867–872. [PubMed] [Google Scholar]
  13. Lin S. Y., Riggs A. D. Photochemical attachment of lac repressor to bromodeoxyuridine-substituted lac operator by ultraviolet radiation. Proc Natl Acad Sci U S A. 1974 Mar;71(3):947–951. doi: 10.1073/pnas.71.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MICHELSON A. M. SYNTHESIS OF NUCLEOTIDE ANHYDRIDES BY ANION EXCHANGE. Biochim Biophys Acta. 1964 Sep 11;91:1–13. doi: 10.1016/0926-6550(64)90164-1. [DOI] [PubMed] [Google Scholar]
  15. O'Gorman R. B., Dunaway M., Matthews K. S. DNA binding characteristics of lactose repressor and the trypsin-resistant core repressor. J Biol Chem. 1980 Nov 10;255(21):10100–10106. [PubMed] [Google Scholar]
  16. Ogata R., Gilbert W. Contacts between the lac repressor and the thymines in the lac operator. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4973–4976. doi: 10.1073/pnas.74.11.4973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Owens J. R., Haley B. E. A study of adenosine 3'-5' cyclic monophosphate binding sites of human erythrocyte membranes using 8-azidoadenosine 3'-5' cyclic monophosphate, a photoaffinity probe. J Supramol Struct. 1976;5(1):91–102. doi: 10.1002/jss.400050110. [DOI] [PubMed] [Google Scholar]
  18. Rosenberg J. M., Khallai O. B., Kopka M. L., Dickerson R. E., Riggs A. D. Lac repressor purification without inactivation of DNA binding activity. Nucleic Acids Res. 1977 Mar;4(3):567–572. doi: 10.1093/nar/4.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schott H. N., Shetlar M. D. Photochemical addition of amino acids to thymine. Biochem Biophys Res Commun. 1974 Aug 5;59(3):1112–1116. doi: 10.1016/s0006-291x(74)80093-8. [DOI] [PubMed] [Google Scholar]
  20. Smith K. C. Photochemical addition of amino acids to 14C-uracil. Biochem Biophys Res Commun. 1969 Feb 7;34(3):354–357. doi: 10.1016/0006-291x(69)90840-7. [DOI] [PubMed] [Google Scholar]
  21. Woody A. Y., Vader C. R., Woody R. W., Haley B. E. Photoaffinity labeling of DNA-dependent RNA polymerase from Escherichia coli with 8-azidoadenosine 5'-triphosphate. Biochemistry. 1984 Jun 19;23(13):2843–2848. doi: 10.1021/bi00308a001. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES