Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Aug;83(15):5517–5520. doi: 10.1073/pnas.83.15.5517

Inducible adhesion of mesenchymal cells to elastic fibers: elastonectin.

W Hornebeck, J M Tixier, L Robert
PMCID: PMC386318  PMID: 3461447

Abstract

The addition of highly purified elastic fibers to confluent human skin fibroblast or porcine aorta smooth muscle cell cultures resulted in a time-dependent, strong adhesion of the fibrils to the cell surface. The kinetics of adhesion was studied by video/time-lapse cinematography. After a 0.5-1 hr lag period, adhesion progressed to a maximum amount in 3-6 hr in the described conditions. Adhesion is strongly accelerated by the prior addition of soluble elastin peptides (kappa-elastin) to the cultures. Cycloheximide inhibits this induced adhesion. Adherent elastic fibers can be detached by treatment with elastase and trypsin but not with collagenase. The radioactive proteins adhering to elastic fibers, after a 6-hr incubation of the induced cultures in presence of [35S]methionine, were extracted and analyzed by NaDodSO4/PAGE. The proteins strongly adhering to the elastic fibers had apparent molecular sizes of about 120, 67, 60, and 45 kDa. Only the 120-kDa protein band showed a significant increase of its associated radioactivity in the induced cultures as compared to the noninduced cultures. We propose that the 120-kDa protein is responsible for the induced adhesion of mesenchymal cells to elastic fibers and designate it "elastonectin."

Full text

PDF
5517

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chamley-Campbell J., Campbell G. R., Ross R. The smooth muscle cell in culture. Physiol Rev. 1979 Jan;59(1):1–61. doi: 10.1152/physrev.1979.59.1.1. [DOI] [PubMed] [Google Scholar]
  2. Hynes R. O., Yamada K. M. Fibronectins: multifunctional modular glycoproteins. J Cell Biol. 1982 Nov;95(2 Pt 1):369–377. doi: 10.1083/jcb.95.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kadar A., Robert B., Robert L. Etude biochimique et électromicroscopique des microfibrilles du tissu conjonctif. Pathol Biol (Paris) 1973 Nov;21(Suppl):80–88. [PubMed] [Google Scholar]
  4. Labat-Robert J., Potazman J. P., Derouette J. C., Robert L. Age-dependent increase of human plasma fibronectin. Cell Biol Int Rep. 1981 Oct;5(10):969–973. doi: 10.1016/0309-1651(81)90213-7. [DOI] [PubMed] [Google Scholar]
  5. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  6. Leake D. S., Hornebeck W., Bréchemier D., Robert L., Peters T. J. Properties and subcellular localization of elastase-like activities of arterial smooth muscle cells in culture. Biochim Biophys Acta. 1983 Nov 22;761(1):41–47. doi: 10.1016/0304-4165(83)90360-4. [DOI] [PubMed] [Google Scholar]
  7. Mecham R. P., Madaras J. G., Senior R. M. Extracellular matrix-specific induction of elastogenic differentiation and maintenance of phenotypic stability in bovine ligament fibroblasts. J Cell Biol. 1984 May;98(5):1804–1812. doi: 10.1083/jcb.98.5.1804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Moczar M., Phan-Dinh-Tuy B., Moczar E., Robert L. Structural glycoproteins from rabbit aortic media. Biochem J. 1983 Apr 1;211(1):257–265. doi: 10.1042/bj2110257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Moczar M., Robert L. Action of human hyperlipemic sera on the biosynthesis of intercellular matrix macromolecules in aorta organ cultures. Paroi Arterielle. 1976 Sep;3(3):105–113. [PubMed] [Google Scholar]
  10. Ordinas A., Hornebeck W., Robert L., Caen J. P. Interaction of platelets with purified macromolecules of the arterial wall. Pathol Biol (Paris) 1975 Dec;23 Suppl:44–48. [PubMed] [Google Scholar]
  11. ROBERT L., POULLAIN N. ETUDES SUR LA STRUCTURE DE L''ELASTINE ET LE MODE D'ACTION DE L''ELASTASE. I. NOUVELLE M'ETHODE DE PR'EPARATION DE D'ERIV'ES SOLUBLES DE L''ELASTINE. Bull Soc Chim Biol (Paris) 1963;45:1317–1326. [PubMed] [Google Scholar]
  12. Robert B., Szigeti M., Derouette J. C., Robert L. Studies on the nature of the "microfibrillar" component of elastic fibers. Eur J Biochem. 1971 Aug 25;21(4):507–516. doi: 10.1111/j.1432-1033.1971.tb01496.x. [DOI] [PubMed] [Google Scholar]
  13. Robert L., Moczar M. Structural glycoproteins. Methods Enzymol. 1982;82(Pt A):839–852. doi: 10.1016/0076-6879(82)82105-8. [DOI] [PubMed] [Google Scholar]
  14. Senior R. M., Griffin G. L., Mecham R. P. Chemotactic responses of fibroblasts to tropoelastin and elastin-derived peptides. J Clin Invest. 1982 Sep;70(3):614–618. doi: 10.1172/JCI110654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Timpl R., Dziadek M., Fujiwara S., Nowack H., Wick G. Nidogen: a new, self-aggregating basement membrane protein. Eur J Biochem. 1983 Dec 15;137(3):455–465. doi: 10.1111/j.1432-1033.1983.tb07849.x. [DOI] [PubMed] [Google Scholar]
  16. Timpl R., Rohde H., Robey P. G., Rennard S. I., Foidart J. M., Martin G. R. Laminin--a glycoprotein from basement membranes. J Biol Chem. 1979 Oct 10;254(19):9933–9937. [PubMed] [Google Scholar]
  17. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
  18. Yamada K. M. Cell surface interactions with extracellular materials. Annu Rev Biochem. 1983;52:761–799. doi: 10.1146/annurev.bi.52.070183.003553. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES