Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Aug 20;93(17):9292–9296. doi: 10.1073/pnas.93.17.9292

SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis.

S E Jacobsen 1, K A Binkowski 1, N E Olszewski 1
PMCID: PMC38635  PMID: 8799194

Abstract

Gibberellins (GAs) are a major class of plant hormones that control many developmental processes, including seed development and germination, flower and fruit development, and flowering time. Genetic studies with Arabidopsis thaliana have identified two genes involved in GA perception or signal transduction. A semidominant mutation at the GIBBERELLIN INSENSITIVE (GAI) locus results in plants resembling GA-deficient mutants but exhibiting reduced sensitivity to GA. Recessive mutations at the SPINDLY (SPY) locus cause a phenotype that is consistent with constitutive activation of GA signal transduction. Here we show that a strong allele of spy is completely epistatic to gai, indicating that SPY acts downstream of GAI. We have cloned the SPY gene and shown that it encodes a new type of signal transduction protein, which contains a tetratricopeptide repeat region, likely serving as a protein interaction domain, and a novel C-terminal region. Mutations in both domains increase GA signal transduction. The presence of a similar gene in Caenorhabditis elegans suggests that SPY represents a class of signal transduction proteins that is present throughout the eukaryotes.

Full text

PDF
9292

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang C., Bowman J. L., DeJohn A. W., Lander E. S., Meyerowitz E. M. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6856–6860. doi: 10.1073/pnas.85.18.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hernández Torres J., Chatellard P., Stutz E. Isolation and characterization of gmsti, a stress-inducible gene from soybean (Glycine max) coding for a protein belonging to the TPR (tetratricopeptide repeats) family. Plant Mol Biol. 1995 Mar;27(6):1221–1226. doi: 10.1007/BF00020896. [DOI] [PubMed] [Google Scholar]
  3. Hooley R. Gibberellins: perception, transduction and responses. Plant Mol Biol. 1994 Dec;26(5):1529–1555. doi: 10.1007/BF00016489. [DOI] [PubMed] [Google Scholar]
  4. Jacobsen S. E., Olszewski N. E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell. 1993 Aug;5(8):887–896. doi: 10.1105/tpc.5.8.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lamb J. R., Michaud W. A., Sikorski R. S., Hieter P. A. Cdc16p, Cdc23p and Cdc27p form a complex essential for mitosis. EMBO J. 1994 Sep 15;13(18):4321–4328. doi: 10.1002/j.1460-2075.1994.tb06752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lamb J. R., Tugendreich S., Hieter P. Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci. 1995 Jul;20(7):257–259. doi: 10.1016/s0968-0004(00)89037-4. [DOI] [PubMed] [Google Scholar]
  7. Olszewski N. E., Martin F. B., Ausubel F. M. Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tabacum. Nucleic Acids Res. 1988 Nov 25;16(22):10765–10782. doi: 10.1093/nar/16.22.10765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Peng J., Harberd N. P. Derivative Alleles of the Arabidopsis Gibberellin-Insensitive (gai) Mutation Confer a Wild-Type Phenotype. Plant Cell. 1993 Mar;5(3):351–360. doi: 10.1105/tpc.5.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sikorski R. S., Michaud W. A., Wootton J. C., Boguski M. S., Connelly C., Hieter P. TPR proteins as essential components of the yeast cell cycle. Cold Spring Harb Symp Quant Biol. 1991;56:663–673. doi: 10.1101/sqb.1991.056.01.075. [DOI] [PubMed] [Google Scholar]
  10. Sun T. P., Kamiya Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell. 1994 Oct;6(10):1509–1518. doi: 10.1105/tpc.6.10.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Tzamarias D., Struhl K. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev. 1995 Apr 1;9(7):821–831. doi: 10.1101/gad.9.7.821. [DOI] [PubMed] [Google Scholar]
  12. Tzamarias D., Struhl K. Functional dissection of the yeast Cyc8-Tup1 transcriptional co-repressor complex. Nature. 1994 Jun 30;369(6483):758–761. doi: 10.1038/369758a0. [DOI] [PubMed] [Google Scholar]
  13. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wilson R. N., Somerville C. R. Phenotypic Suppression of the Gibberellin-Insensitive Mutant (gai) of Arabidopsis. Plant Physiol. 1995 Jun;108(2):495–502. doi: 10.1104/pp.108.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wilson R., Ainscough R., Anderson K., Baynes C., Berks M., Bonfield J., Burton J., Connell M., Copsey T., Cooper J. 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature. 1994 Mar 3;368(6466):32–38. doi: 10.1038/368032a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES