Abstract
Chromosomal DNA was isolated from rapidly dividing cells of Xenopus laevis embryos at blastulation, at gastrulation, and at the beginning of hatching. Few, if any, replication forks were seen by electron microscopy in DNA isolated at any stage of embryogenesis. Instead, unbranched DNA, which appeared to be single-stranded, was abundant at all stages. The percentage of chromosomal DNA that was single-stranded was quantitated by electron microscopy and by monitoring the release of acid-soluble radioactivity during digestion of labeled chromosomal DNA with nucleases specific for single-stranded DNA. The amount of single-stranded DNA was inversely correlated with the length of S phase during embryogenesis. We postulate that chromosomal DNA replication in X. laevis embryos takes place by a mechanism in which strand separation is uncoupled from DNA synthesis.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldari C. T., Amaldi F., Buongiorno-Nardelli M. Electron microscopic analysis of replicating DNA of sea urchin embryos. Cell. 1978 Nov;15(3):1095–1107. doi: 10.1016/0092-8674(78)90293-3. [DOI] [PubMed] [Google Scholar]
- Benbow R. M., Ford C. C. Cytoplasmic control of nuclear DNA synthesis during early development of Xenopus laevis: a cell-free assay. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2437–2441. doi: 10.1073/pnas.72.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benbow R. M., Krauss M. R., Reeder R. H. DNA synthesis in a multi-enzyme system from Xenopus laevis eggs. Cell. 1978 Feb;13(2):307–318. doi: 10.1016/0092-8674(78)90199-x. [DOI] [PubMed] [Google Scholar]
- Bjursell G., Gussander E., Lindahl T. Long regions of single-stranded DNA in human cells. Nature. 1979 Aug 2;280(5721):420–423. doi: 10.1038/280420a0. [DOI] [PubMed] [Google Scholar]
- Blumenthal A. B., Kriegstein H. J., Hogness D. S. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb Symp Quant Biol. 1974;38:205–223. doi: 10.1101/sqb.1974.038.01.024. [DOI] [PubMed] [Google Scholar]
- Buckler-White A. J., Krauss M. R., Pigiet V., Benbow R. M. Asynchronous bidirectional replication of polyoma virus DNA. J Virol. 1982 Sep;43(3):885–895. doi: 10.1128/jvi.43.3.885-895.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burks D. J., Stambrook P. J. Enrichment and visualization of small replication units from cultured mammalian cells. J Cell Biol. 1978 Jun;77(3):762–773. doi: 10.1083/jcb.77.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carnevali F., Filetici P. Single-stranded molecules in DNA preparations from cultured mammalian cells at different moments of cell cycle. Chromosoma. 1981;82(3):377–384. doi: 10.1007/BF00285763. [DOI] [PubMed] [Google Scholar]
- Case S. T., Baker R. F. Position of regularly spaced single-stranded regions relative to 5-bromodeoxyuridine-sensitive sites in sea urchin morula DNA. Nature. 1975 Jan 3;253(5486):64–66. doi: 10.1038/253064a0. [DOI] [PubMed] [Google Scholar]
- Case S. T., Baker R. G. Detection of long eukaryote-specific pyrimidine runs in repetitive DNA sequences and their relation to single-stranded regions in DNA isolated from sea urchin embryos. J Mol Biol. 1975 Oct 15;98(1):69–92. doi: 10.1016/s0022-2836(75)80102-1. [DOI] [PubMed] [Google Scholar]
- Case S. T., Mongeon R. L., Baker R. F. Single-stranded regions in DNA isolated from different developmental stages of the sea urchin. Biochim Biophys Acta. 1974 Apr 27;349(1):1–12. doi: 10.1016/0005-2787(74)90002-1. [DOI] [PubMed] [Google Scholar]
- Collins J. M., Berry D. E., Cobbs C. S. Structure of parental deoxyribonucleic acid of synchronized HeLa cells. Biochemistry. 1977 Dec 13;16(25):5438–5444. doi: 10.1021/bi00644a006. [DOI] [PubMed] [Google Scholar]
- Collins J. M. Deoxyribonucleic acid structure in human diploid fibroblasts stimulated to proliferate. J Biol Chem. 1977 Jan 10;252(1):141–147. [PubMed] [Google Scholar]
- Conaway R. C., Lehman I. R. Synthesis by the DNA primase of Drosophila melanogaster of a primer with a unique chain length. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4585–4588. doi: 10.1073/pnas.79.15.4585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cook P. R., Brazell I. A., Jost E. Characterization of nuclear structures containing superhelical DNA. J Cell Sci. 1976 Nov;22(2):303–324. doi: 10.1242/jcs.22.2.303. [DOI] [PubMed] [Google Scholar]
- Cozzarelli N. R. DNA topoisomerases. Cell. 1980 Nov;22(2 Pt 2):327–328. doi: 10.1016/0092-8674(80)90341-4. [DOI] [PubMed] [Google Scholar]
- DePamphilis M. L., Wassarman P. M. Replication of eukaryotic chromosomes: a close-up of the replication fork. Annu Rev Biochem. 1980;49:627–666. doi: 10.1146/annurev.bi.49.070180.003211. [DOI] [PubMed] [Google Scholar]
- Edenberg H. J., Huberman J. A. Eukaryotic chromosome replication. Annu Rev Genet. 1975;9:245–284. doi: 10.1146/annurev.ge.09.120175.001333. [DOI] [PubMed] [Google Scholar]
- FLICKINGER R. A., COWARD S. J., MIYAGE M., MOSER C., ROLLINS E. THE ABILITY OF DNA AND CHROMATIN OF DEVELOPING FROG EMBRYOS TO PRIME FOR RNA POLYMERASE-DEPENDENT RNA SYNTHESIS. Proc Natl Acad Sci U S A. 1965 Apr;53:783–790. doi: 10.1073/pnas.53.4.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farzaneh F., Pearson C. K. A method for isolating uncontaminated nuclei from all stages of developing Xenopus laevis embryos. J Embryol Exp Morphol. 1978 Dec;48:101–108. [PubMed] [Google Scholar]
- Funderud S., Andreassen R., Haugli F. DNA replication in Physarum polycephalum: electron microscopic and autoradiographic analysis of replicating DNA from defined stages of the S-period. Nucleic Acids Res. 1979 Apr;6(4):1417–1431. doi: 10.1093/nar/6.4.1417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gargiulo G., Wasserman W., Worcel A. Properties of the chromatin assembled on DNA injected into Xenopus oocytes and eggs. Cold Spring Harb Symp Quant Biol. 1983;47(Pt 1):549–556. doi: 10.1101/sqb.1983.047.01.064. [DOI] [PubMed] [Google Scholar]
- Gargiulo G., Worcel A. Analysis of the chromatin assembled in germinal vesicles of Xenopus oocytes. J Mol Biol. 1983 Nov 5;170(3):699–722. doi: 10.1016/s0022-2836(83)80128-4. [DOI] [PubMed] [Google Scholar]
- Goldstein N. O., Rutman R. J. In vivo discontinuous DNA synthesis in Ehrlich ascites tumours. Nat New Biol. 1973 Aug 29;244(139):267–269. doi: 10.1038/newbio244267a0. [DOI] [PubMed] [Google Scholar]
- Habener J. F., Bynum B. S., Shack J. Destabilized secondary structure of newly replicated HeLa DNA. J Mol Biol. 1970 Apr 14;49(1):157–170. doi: 10.1016/0022-2836(70)90383-9. [DOI] [PubMed] [Google Scholar]
- Hand R. Eucaryotic DNA: organization of the genome for replication. Cell. 1978 Oct;15(2):317–325. doi: 10.1016/0092-8674(78)90001-6. [DOI] [PubMed] [Google Scholar]
- Hardman N., Gillespie D. A. DNA replication in Physarum polycephalum. Analysis of replicating nuclear DNA using the electron microscope. Eur J Biochem. 1980 May;106(1):161–167. [PubMed] [Google Scholar]
- Harland R. M., Laskey R. A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell. 1980 Oct;21(3):761–771. doi: 10.1016/0092-8674(80)90439-0. [DOI] [PubMed] [Google Scholar]
- Henson P. The presence of single-stranded regions in mammalian DNA. J Mol Biol. 1978 Mar 15;119(4):487–506. doi: 10.1016/0022-2836(78)90198-5. [DOI] [PubMed] [Google Scholar]
- Hines P. J., Benbow R. M. Initiation of replication at specific origins in DNA molecules microinjected into unfertilized eggs of the frog Xenopus laevis. Cell. 1982 Sep;30(2):459–468. doi: 10.1016/0092-8674(82)90243-4. [DOI] [PubMed] [Google Scholar]
- Hoffman L. M., Collins J. M. Single-stranded regions in regenerating rat liver DNA. Nature. 1976 Apr 15;260(5552):642–643. doi: 10.1038/260642a0. [DOI] [PubMed] [Google Scholar]
- Huberman J. A., Horwitz H. Discontinuous DNA synthesis in mammalian cells. Cold Spring Harb Symp Quant Biol. 1974;38:233–238. doi: 10.1101/sqb.1974.038.01.026. [DOI] [PubMed] [Google Scholar]
- Huberman J. A., Riggs A. D. On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol. 1968 Mar 14;32(2):327–341. doi: 10.1016/0022-2836(68)90013-2. [DOI] [PubMed] [Google Scholar]
- Inman R. B., Schnös M. Structure of branch points in replicating DNA: presence of single-stranded connections in lambda DNA branch points. J Mol Biol. 1971 Mar 14;56(2):319–325. doi: 10.1016/0022-2836(71)90467-0. [DOI] [PubMed] [Google Scholar]
- Kavenoff R., Zimm B. H. Chromosome-sized DNA molecules from Drosophila. Chromosoma. 1973;41(1):1–27. doi: 10.1007/BF00284071. [DOI] [PubMed] [Google Scholar]
- Kohwi-Shigematsu T., Gelinas R., Weintraub H. Detection of an altered DNA conformation at specific sites in chromatin and supercoiled DNA. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4389–4393. doi: 10.1073/pnas.80.14.4389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kozu T., Yagura T., Seno T. De novo DNA synthesis by a novel mouse DNA polymerase associated with primase activity. Nature. 1982 Jul 8;298(5870):180–182. doi: 10.1038/298180a0. [DOI] [PubMed] [Google Scholar]
- Kriegstein H. J., Hogness D. S. Mechanism of DNA replication in Drosophila chromosomes: structure of replication forks and evidence for bidirectionality. Proc Natl Acad Sci U S A. 1974 Jan;71(1):135–139. doi: 10.1073/pnas.71.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krokan H., Wist E., Prydz H. DNA replication intermediates in whole HeLa cells and isolated nuclei. Biochim Biophys Acta. 1977 Apr 19;475(4):553–561. doi: 10.1016/0005-2787(77)90316-1. [DOI] [PubMed] [Google Scholar]
- Kurek M. P., Billig D., Stambrook P. Size classes of replication units in DNA from sea urchin embryos. J Cell Biol. 1979 Jun;81(3):698–703. doi: 10.1083/jcb.81.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- König H., Riedel H. D., Knippers R. Reactions in vitro of the DNA polymerase-primase from Xenopus laevis eggs. A role for ATP in chain elongation. Eur J Biochem. 1983 Oct 3;135(3):435–442. doi: 10.1111/j.1432-1033.1983.tb07670.x. [DOI] [PubMed] [Google Scholar]
- Laskey R. A., Harland R. M. Replication origins in the eucaryotic chromosome. Cell. 1981 May;24(2):283–284. doi: 10.1016/0092-8674(81)90316-0. [DOI] [PubMed] [Google Scholar]
- Lee C. S., Pavan C. Replicating DNA molecules from fertilized eggs of Cochliomyia hominivorax (Diptera). Chromosoma. 1974;47(4):429–437. doi: 10.1007/BF00326364. [DOI] [PubMed] [Google Scholar]
- Liu L. F. DNA topoisomerases--enzymes that catalyse the breaking and rejoining of DNA. CRC Crit Rev Biochem. 1983;15(1):1–24. doi: 10.3109/10409238309102799. [DOI] [PubMed] [Google Scholar]
- Lönn U. Detection of a 10 kb DNA replication intermediate in human melanoma cells. Chromosoma. 1982;84(5):663–673. doi: 10.1007/BF00286332. [DOI] [PubMed] [Google Scholar]
- Lönn U., Lönn S. Aphidicolin inhibits the synthesis and joining of short DNA fragments but not the union of 10-kilobase DNA replication intermediates. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3996–3999. doi: 10.1073/pnas.80.13.3996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Micheli G., Baldari C. T., Carri M. T., Di Cello G., Buongiorno-Nardelli M. An electron microscope study of chromosomal DNA replication in different eukaryotic systems. Exp Cell Res. 1982 Jan;137(1):127–140. doi: 10.1016/0014-4827(82)90015-5. [DOI] [PubMed] [Google Scholar]
- Méchali M., Harland R. M. DNA synthesis in a cell-free system from Xenopus eggs: priming and elongation on single-stranded DNA in vitro. Cell. 1982 Aug;30(1):93–101. doi: 10.1016/0092-8674(82)90015-0. [DOI] [PubMed] [Google Scholar]
- Newlon C. S., Petes T. D., Hereford L. M., Fangman W. L. Replication of yeast chromosomal DNA. Nature. 1974 Jan 4;247(5435):32–35. doi: 10.1038/247032a0. [DOI] [PubMed] [Google Scholar]
- Painter R. B., Schaefer A. State of newly synthesized HeLa DNA. Nature. 1969 Mar 29;221(5187):1215–1217. doi: 10.1038/2211215a0. [DOI] [PubMed] [Google Scholar]
- Paoletti C., Dutheillet-Lamonthézie N., Jeanteur P., Obrenovitch A. Mise en évidence et étude cinétique des formes replicatives du DNA dans les cellules animales. Biochim Biophys Acta. 1967 Dec 19;149(2):435–450. [PubMed] [Google Scholar]
- Paulson J. R., Laemmli U. K. The structure of histone-depleted metaphase chromosomes. Cell. 1977 Nov;12(3):817–828. doi: 10.1016/0092-8674(77)90280-x. [DOI] [PubMed] [Google Scholar]
- Riedel H. D., König H., Stahl H., Knippers R. Circular single stranded phage M13-DNA as a template for DNA synthesis in protein extracts from Xenopus laevis eggs: evidence for a eukaryotic DNA priming activity. Nucleic Acids Res. 1982 Sep 25;10(18):5621–5635. doi: 10.1093/nar/10.18.5621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shioda M., Nelson E. M., Bayne M. L., Benbow R. M. DNA primase activity associated with DNA polymerase alpha from Xenopus laevis ovaries. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7209–7213. doi: 10.1073/pnas.79.23.7209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan E. M., Lerner R. A. An immunological study of the fates of nuclear and nucleolar macromoleculus during the cell cycle. J Mol Biol. 1972 Jul 14;68(1):107–114. doi: 10.1016/0022-2836(72)90266-5. [DOI] [PubMed] [Google Scholar]
- Taylor J. H., Wu M., Erickson L. C. Functional subunits of chromosomal DNA from higher eukaryotes. Cold Spring Harb Symp Quant Biol. 1974;38:225–231. doi: 10.1101/sqb.1974.038.01.025. [DOI] [PubMed] [Google Scholar]
- Tseng B. Y., Goulian M. DNA synthesis in human lymphocyts: intermediates in DNA synthesis, in vitro and in vivo. J Mol Biol. 1975 Dec 5;99(2):317–337. doi: 10.1016/s0022-2836(75)80149-5. [DOI] [PubMed] [Google Scholar]
- Valenzuela M. S., Mueller G. C., Dasgupta S. Nuclear matrix-DNA complex resulting from EcoR1 digestion of HeLa nucleoids is enriched for DNA replicating forks. Nucleic Acids Res. 1983 Apr 11;11(7):2155–2164. doi: 10.1093/nar/11.7.2155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vogelstein B., Pardoll D. M., Coffey D. S. Supercoiled loops and eucaryotic DNA replicaton. Cell. 1980 Nov;22(1 Pt 1):79–85. doi: 10.1016/0092-8674(80)90156-7. [DOI] [PubMed] [Google Scholar]
- Wigler M., Sweet R., Sim G. K., Wold B., Pellicer A., Lacy E., Maniatis T., Silverstein S., Axel R. Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell. 1979 Apr;16(4):777–785. doi: 10.1016/0092-8674(79)90093-x. [DOI] [PubMed] [Google Scholar]
- Wolf D. P., Hedrick J. L. A molecular approach to fertilization. II. Viability and artificial fertilization of Xenopus laevis gemetes. Dev Biol. 1971 Jul;25(3):348–359. doi: 10.1016/0012-1606(71)90036-4. [DOI] [PubMed] [Google Scholar]
- Wolstenholme D. R. Replicating DNA molecules from eggs of Drosophila melanogaster. Chromosoma. 1973 Jul 23;43(1):1–18. doi: 10.1007/BF01256731. [DOI] [PubMed] [Google Scholar]
- Wortzman M. S., Baker R. F. Two classes of single-stranded regions in DNA from sea urchin embryos. Science. 1981 Feb 6;211(4482):588–590. doi: 10.1126/science.7455698. [DOI] [PubMed] [Google Scholar]
- Zakian V. A. Electron microscopic analysis of DNA replication in main band and satellite DNAs of Drosophila virilis. J Mol Biol. 1976 Dec;108(2):305–331. doi: 10.1016/s0022-2836(76)80123-4. [DOI] [PubMed] [Google Scholar]
- Zalokar M. Autoradiographic study of protein and RNA formation during early development of Drosophila eggs. Dev Biol. 1976 Apr;49(2):425–437. doi: 10.1016/0012-1606(76)90185-8. [DOI] [PubMed] [Google Scholar]
- Zierler M. K., Marini N. J., Stowers D. J., Benbow R. M. Stockpiling of DNA polymerases during oogenesis and embryogenesis in the frog, Xenopus laevis. J Biol Chem. 1985 Jan 25;260(2):974–981. [PubMed] [Google Scholar]