Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Aug 6;93(16):8194–8199. doi: 10.1073/pnas.93.16.8194

Enzyme-mediated spatial segregation on individual polymeric support beads: application to generation and screening of encoded combinatorial libraries.

J Vágner 1, G Barany 1, K S Lam 1, V Krchnák 1, N F Sepetov 1, J A Ostrem 1, P Strop 1, M Lebl 1
PMCID: PMC38645  PMID: 8710846

Abstract

Proteolysis of short N alpha-protected peptide substrates bound to polyoxyethylene-polystyrene beads releases selectively free amino sites in the enzyme-accessible "surface" area. The substantial majority of functional sites in the "interior" of the polymeric support are not reached by the enzyme and remain uncleaved (protected). Subsequent synthesis with two classes of orthogonal protecting groups-N alpha-tert-butyloxycarbonyl (Boc) and N alpha-9-fluorenylmethyloxy-carbonyl (Fmoc)-allows generation of two structures on the same bead. The surface structure is available for receptor interactions, whereas the corresponding interior structure is used for coding. Coding structures are usually readily sequenceable peptides. This "shaving" methodology was illustrated by the preparation of a peptide-encoded model peptide combinatorial library containing 1.0 x 10(5) members at approximately 6-fold degeneracy. From this single library, good ligands were selected for three different receptors: anti-beta-endorphin anti-body, streptavidin, and thrombin, and the binding structures were deduced correctly by sequencing the coding peptides present on the same beads.

Full text

PDF
8194

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DeWitt S. H., Kiely J. S., Stankovic C. J., Schroeder M. C., Cody D. M., Pavia M. R. "Diversomers": an approach to nonpeptide, nonoligomeric chemical diversity. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6909–6913. doi: 10.1073/pnas.90.15.6909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fodor S. P., Read J. L., Pirrung M. C., Stryer L., Lu A. T., Solas D. Light-directed, spatially addressable parallel chemical synthesis. Science. 1991 Feb 15;251(4995):767–773. doi: 10.1126/science.1990438. [DOI] [PubMed] [Google Scholar]
  3. Furka A., Sebestyén F., Asgedom M., Dibó G. General method for rapid synthesis of multicomponent peptide mixtures. Int J Pept Protein Res. 1991 Jun;37(6):487–493. doi: 10.1111/j.1399-3011.1991.tb00765.x. [DOI] [PubMed] [Google Scholar]
  4. Gallop M. A., Barrett R. W., Dower W. J., Fodor S. P., Gordon E. M. Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem. 1994 Apr 29;37(9):1233–1251. doi: 10.1021/jm00035a001. [DOI] [PubMed] [Google Scholar]
  5. Geysen H. M., Rodda S. J., Mason T. J. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol. 1986 Jul;23(7):709–715. doi: 10.1016/0161-5890(86)90081-7. [DOI] [PubMed] [Google Scholar]
  6. Gordon E. M., Barrett R. W., Dower W. J., Fodor S. P., Gallop M. A. Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem. 1994 May 13;37(10):1385–1401. doi: 10.1021/jm00036a001. [DOI] [PubMed] [Google Scholar]
  7. Houghten R. A., Pinilla C., Blondelle S. E., Appel J. R., Dooley C. T., Cuervo J. H. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature. 1991 Nov 7;354(6348):84–86. doi: 10.1038/354084a0. [DOI] [PubMed] [Google Scholar]
  8. Kasafírek E., Fric P., Slabý J., Malis F. p-Nitroanilides of 3-carboxypropionyl-peptides. Their cleavage by elastase, trypsin, and chymotrypsin. Eur J Biochem. 1976 Oct 1;69(1):1–13. doi: 10.1111/j.1432-1033.1976.tb10852.x. [DOI] [PubMed] [Google Scholar]
  9. Kelly A. B., Maraganore J. M., Bourdon P., Hanson S. R., Harker L. A. Antithrombotic effects of synthetic peptides targeting various functional domains of thrombin. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6040–6044. doi: 10.1073/pnas.89.13.6040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krchnák V., Vágner J. Color-monitored solid-phase multiple peptide synthesis under low-pressure continuous-flow conditions. Pept Res. 1990 Jul-Aug;3(4):182–193. [PubMed] [Google Scholar]
  11. Krchnák V., Weichsel A. S., Cabel D., Lebl M. Linear presentation of variable side-chain spacing in a highly diverse combinatorial library. Pept Res. 1995 Jul-Aug;8(4):198–205. [PubMed] [Google Scholar]
  12. Lam K. S., Salmon S. E., Hersh E. M., Hruby V. J., Kazmierski W. M., Knapp R. J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature. 1991 Nov 7;354(6348):82–84. doi: 10.1038/354082a0. [DOI] [PubMed] [Google Scholar]
  13. Lebl M., Krchnák V., Sepetov N. F., Seligmann B., Strop P., Felder S., Lam K. S. One-bead-one-structure combinatorial libraries. Biopolymers. 1995;37(3):177–198. doi: 10.1002/bip.360370303. [DOI] [PubMed] [Google Scholar]
  14. Needels M. C., Jones D. G., Tate E. H., Heinkel G. L., Kochersperger L. M., Dower W. J., Barrett R. W., Gallop M. A. Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10700–10704. doi: 10.1073/pnas.90.22.10700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nikolaiev V., Stierandová A., Krchnák V., Seligmann B., Lam K. S., Salmon S. E., Lebl M. Peptide-encoding for structure determination of nonsequenceable polymers within libraries synthesized and tested on solid-phase supports. Pept Res. 1993 May-Jun;6(3):161–170. [PubMed] [Google Scholar]
  16. Ohlmeyer M. H., Swanson R. N., Dillard L. W., Reader J. C., Asouline G., Kobayashi R., Wigler M., Still W. C. Complex synthetic chemical libraries indexed with molecular tags. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10922–10926. doi: 10.1073/pnas.90.23.10922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sachdev G. P., Fruton J. S. Secondary enzyme-substrate interactions and the specificity of pepsin. Biochemistry. 1970 Nov 10;9(23):4465–4470. doi: 10.1021/bi00825a001. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES