Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Aug;83(16):6146–6150. doi: 10.1073/pnas.83.16.6146

Characterization of major peptides in Creutzfeldt-Jakob disease and scrapie.

T Sklaviadis, L Manuelidis, E E Manuelidis
PMCID: PMC386456  PMID: 3090551

Abstract

In Creutzfeldt-Jakob disease three major peptides cosediment with the infectious agent. These distinct peptides are not present in identical fractions from uninfected brain, and bind to polyclonal antibodies raised against "prion protein" purified by protease treatment. Three similar distinct peptides are also found in scrapie-infected brain fractions purified without the use of proteases. To clarify the relationships between these distinct peptides and prion protein, peptides were analyzed on immunoblots after cleavage with various glycosidases. There are two different 34-kDa peptides. One binds to ricin and cannot be detected by nonequilibrium pH gradient electrophoresis, presumably due to its highly acidic or basic pI. A second basic 34-kDa glycopeptide (Gp34) contains multiple terminal sialic acid residues responsible for charge heterogeneity (pI values, 7.2-7.8) and is reduced to a single spot with a pI value of 7.8 after neuraminidase treatment. After (but not before) neuraminidase treatment, secondary D-galactose-like sugars are detectable on Gp34, and a small number of N-acetylglucosamine residues probably represent the third sugar residue in an N-linked chain. When virtually all sugar residues are removed with endoglycosidase H the molecular weight of Gp34 is reduced by only approximately equal to 2 kDa. The residual peptide strongly binds antibody. A third acidic 24- to 26-kDa species (p26) also binds polyclonal antibodies but, in contrast to Gp34, was unaffected by any glycosidase treatment. Protease-treated peptides showed a very broad array of pI spots, consistent with a heterogeneous protein origin. None of the nonproteolyzed peptides show a clear relationship to prion protein. The number of sugar residues on Gp34 is not consistent with those estimated for prion protein. Although p26 could be the source of the "prion sequence," p26 does not appear to be glycosylated. Regardless, it is likely that all the major peptides described thus far are accumulated or modified normal gene products and are not integral components of the infectious agent.

Full text

PDF
6146

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F., Nikaido K. Two-dimensional gel electrophoresis of membrane proteins. Biochemistry. 1976 Feb 10;15(3):616–623. doi: 10.1021/bi00648a026. [DOI] [PubMed] [Google Scholar]
  2. Bhavanandan V. P., Katlic A. W. The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J Biol Chem. 1979 May 25;254(10):4000–4008. [PubMed] [Google Scholar]
  3. Bockman J. M., Kingsbury D. T., McKinley M. P., Bendheim P. E., Prusiner S. B. Creutzfeldt-Jakob disease prion proteins in human brains. N Engl J Med. 1985 Jan 10;312(2):73–78. doi: 10.1056/NEJM198501103120202. [DOI] [PubMed] [Google Scholar]
  4. Bolton D. C., Meyer R. K., Prusiner S. B. Scrapie PrP 27-30 is a sialoglycoprotein. J Virol. 1985 Feb;53(2):596–606. doi: 10.1128/jvi.53.2.596-606.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown P., Coker-Vann M., Pomeroy K., Franko M., Asher D. M., Gibbs C. J., Jr, Gajdusek D. C. Diagnosis of Creutzfeldt-Jakob disease by Western blot identification of marker protein in human brain tissue. N Engl J Med. 1986 Feb 27;314(9):547–551. doi: 10.1056/NEJM198602273140904. [DOI] [PubMed] [Google Scholar]
  6. Chesebro B., Race R., Wehrly K., Nishio J., Bloom M., Lechner D., Bergstrom S., Robbins K., Mayer L., Keith J. M. Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature. 1985 May 23;315(6017):331–333. doi: 10.1038/315331a0. [DOI] [PubMed] [Google Scholar]
  7. Diringer H., Gelderblom H., Hilmert H., Ozel M., Edelbluth C., Kimberlin R. H. Scrapie infectivity, fibrils and low molecular weight protein. Nature. 1983 Dec 1;306(5942):476–478. doi: 10.1038/306476a0. [DOI] [PubMed] [Google Scholar]
  8. HUGHES R. C., JEANLOZ R. W. THE EXTRACELLULAR GLYCOSIDASES OF DIPLOCOCCUS PNEUMONIAE. I. PURIFICATION AND PROPERTIES OF A NEURAMINIDASE AND A BETA-GALACTOSIDASE. ACTION ON THE ALPHA-1-ACID GLYCOPROTEIN OF HUMAN PLASMA. Biochemistry. 1964 Oct;3:1535–1543. doi: 10.1021/bi00898a025. [DOI] [PubMed] [Google Scholar]
  9. HUGHES R. C., JEANLOZ R. W. THE EXTRACELLULAR GLYCOSIDASES OF DIPLOCOCCUS PNEUMONIAE. II. PURIFICATION AND PROPERTIES OF A BETA-N-ACETYLGLUCOSAMINIDASE. ACTION ON A DERIVATIVE ON THE ALPHA-1-ACID GLYCOPROTEIN OF HUMAN PLASMA. Biochemistry. 1964 Oct;3:1543–1548. doi: 10.1021/bi00898a026. [DOI] [PubMed] [Google Scholar]
  10. Kascsak R. J., Rubenstein R., Merz P. A., Carp R. I., Wisniewski H. M., Diringer H. Biochemical differences among scrapie-associated fibrils support the biological diversity of scrapie agents. J Gen Virol. 1985 Aug;66(Pt 8):1715–1722. doi: 10.1099/0022-1317-66-8-1715. [DOI] [PubMed] [Google Scholar]
  11. Lax A. J., Millson G. C., Manning E. J. Involvement of protein in scrapie agent infectivity. Res Vet Sci. 1983 Mar;34(2):155–158. [PubMed] [Google Scholar]
  12. Leavitt J. C., Phelan M. A., Leavitt A. H., Mayner R. E., Ennis F. A. Human influenza A virus: comparative analysis of the structural polypeptides by two-dimensional polyacrylamide gel electrophoresis. Virology. 1979 Dec;99(2):340–348. doi: 10.1016/0042-6822(79)90013-8. [DOI] [PubMed] [Google Scholar]
  13. Manuelidis E. E., Gorgacz E. J., Manuelidis L. Interspecies transmission of Creutzfeldt-Jakob disease to Syrian hamsters with reference to clinical syndromes and strains of agent. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3432–3436. doi: 10.1073/pnas.75.7.3432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Manuelidis L. Creutzfeldt-Jakob disease prion proteins in human brains. N Engl J Med. 1985 Jun 20;312(25):1643–1645. [PubMed] [Google Scholar]
  15. Manuelidis L., Valley S., Manuelidis E. E. Specific proteins associated with Creutzfeldt-Jakob disease and scrapie share antigenic and carbohydrate determinants. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4263–4267. doi: 10.1073/pnas.82.12.4263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Merz P. A., Rohwer R. G., Kascsak R., Wisniewski H. M., Somerville R. A., Gibbs C. J., Jr, Gajdusek D. C. Infection-specific particle from the unconventional slow virus diseases. Science. 1984 Jul 27;225(4660):437–440. doi: 10.1126/science.6377496. [DOI] [PubMed] [Google Scholar]
  17. Merz P. A., Somerville R. A., Wisniewski H. M., Manuelidis L., Manuelidis E. E. Scrapie-associated fibrils in Creutzfeldt-Jakob disease. Nature. 1983 Dec 1;306(5942):474–476. doi: 10.1038/306474a0. [DOI] [PubMed] [Google Scholar]
  18. Multhaup G., Diringer H., Hilmert H., Prinz H., Heukeshoven J., Beyreuther K. The protein component of scrapie-associated fibrils is a glycosylated low molecular weight protein. EMBO J. 1985 Jun;4(6):1495–1501. doi: 10.1002/j.1460-2075.1985.tb03808.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  20. O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
  21. Oesch B., Westaway D., Wälchli M., McKinley M. P., Kent S. B., Aebersold R., Barry R. A., Tempst P., Teplow D. B., Hood L. E. A cellular gene encodes scrapie PrP 27-30 protein. Cell. 1985 Apr;40(4):735–746. doi: 10.1016/0092-8674(85)90333-2. [DOI] [PubMed] [Google Scholar]
  22. Prusiner S. B., Groth D. F., Bolton D. C., Kent S. B., Hood L. E. Purification and structural studies of a major scrapie prion protein. Cell. 1984 Aug;38(1):127–134. doi: 10.1016/0092-8674(84)90533-6. [DOI] [PubMed] [Google Scholar]
  23. Prusiner S. B. Novel proteinaceous infectious particles cause scrapie. Science. 1982 Apr 9;216(4542):136–144. doi: 10.1126/science.6801762. [DOI] [PubMed] [Google Scholar]
  24. Rasenick M. M., Valley S., Manuelidis E. E., Manuelidis L. Creutzfeldt-Jakob infection increases adenylate cyclase activity in specific regions of guinea pig brain. FEBS Lett. 1986 Mar 17;198(1):164–168. doi: 10.1016/0014-5793(86)81205-4. [DOI] [PubMed] [Google Scholar]
  25. Tarentino A. L., Maley F. Purification and properties of an endo-beta-N-acetylglucosaminidase from Streptomyces griseus. J Biol Chem. 1974 Feb 10;249(3):811–817. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES