Abstract
Castanospermine (Cas), an inhibitor of alpha-glucosidase I, blocks "trimming" of the N-linked oligosaccharide Glc3Man9GlcNAc2, thus preventing normal glycoprotein maturation. With use of a dual-label protocol, Xenopus retinas incubated in the presence of Cas exhibited at least a 2.3-fold increase in the incorporation of [3H]mannose into total retina Cl3CCOOH-precipitable material, whereas incorporation of [14C]leucine was not significantly affected, relative to controls. Analysis of NaDodSO4/PAGE fluorograms of solubilized retinas and rod outer segment (ROS) membranes indicated a relatively selective effect of Cas on opsin (the rod visual pigment apoglycoprotein). The apparent molecular mass of opsin was increased by approximately 2500 in the presence of Cas; the incorporation of [3H]mannose into opsin was enhanced about 2.3-fold without a significant effect on [14C]leucine incorporation, relative to controls. Electron microscopic autoradiography of retinas incubated for 4 hr with [3H]mannose showed that the number of newly formed ROS discs in Cas-treated retinas was not significantly different from controls, but the silver grain density over those discs was about 2.6-fold greater than in controls. The morphology of the newly formed discs was comparable under both conditions. Thus, opsin bearing abnormally large oligosaccharides can be accommodated in the process of disc morphogenesis. These results suggest that the structural requirements for opsin's oligosaccharides, with regard to their potential role as determinants of disc morphogenesis, are not stringent. Furthermore, post-translational processing of N-linked oligosaccharides is not essential for the normal intracellular routing and cell surface expression of membrane glycoproteins.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berger E. G., Buddecke E., Kamerling J. P., Kobata A., Paulson J. C., Vliegenthart J. F. Structure, biosynthesis and functions of glycoprotein glycans. Experientia. 1982 Oct 15;38(10):1129–1162. doi: 10.1007/BF01959725. [DOI] [PubMed] [Google Scholar]
- Bok D. Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Invest Ophthalmol Vis Sci. 1985 Dec;26(12):1659–1694. [PubMed] [Google Scholar]
- Burke B., Matlin K., Bause E., Legler G., Peyrieras N., Ploegh H. Inhibition of N-linked oligosaccharide trimming does not interfere with surface expression of certain integral membrane proteins. EMBO J. 1984 Mar;3(3):551–556. doi: 10.1002/j.1460-2075.1984.tb01845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daemen F. J. Vertebrate rod outer segment membranes. Biochim Biophys Acta. 1973 Nov 28;300(3):255–288. doi: 10.1016/0304-4157(73)90006-3. [DOI] [PubMed] [Google Scholar]
- Elbein A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC Crit Rev Biochem. 1984;16(1):21–49. doi: 10.3109/10409238409102805. [DOI] [PubMed] [Google Scholar]
- Fliesler S. J., Anderson R. E. Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res. 1983;22(2):79–131. doi: 10.1016/0163-7827(83)90004-8. [DOI] [PubMed] [Google Scholar]
- Fliesler S. J., Basinger S. F. Tunicamycin blocks the incorporation of opsin into retinal rod outer segment membranes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1116–1120. doi: 10.1073/pnas.82.4.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fliesler S. J., Rapp L. M., Hollyfield J. G. Photoreceptor-specific degeneration caused by tunicamycin. Nature. 1984 Oct 11;311(5986):575–577. doi: 10.1038/311575a0. [DOI] [PubMed] [Google Scholar]
- Fliesler S. J., Rayborn M. E., Hollyfield J. G. Membrane morphogenesis in retinal rod outer segments: inhibition by tunicamycin. J Cell Biol. 1985 Feb;100(2):574–587. doi: 10.1083/jcb.100.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fukuda M. N., Papermaster D. S., Hargrave P. A. Rhodopsin carbohydrate. Structure of small oligosaccharides attached at two sites near the NH2 terminus. J Biol Chem. 1979 Sep 10;254(17):8201–8207. [PubMed] [Google Scholar]
- Hargrave P. A., McDowell J. H., Feldmann R. J., Atkinson P. H., Rao J. K., Argos P. Rhodopsin's protein and carbohydrate structure: selected aspects. Vision Res. 1984;24(11):1487–1499. doi: 10.1016/0042-6989(84)90311-0. [DOI] [PubMed] [Google Scholar]
- Hargrave P. A. The amino-terminal tryptic peptide of bovine rhodopsin. A glycopeptide containing two sites of oligosaccharide attachment. Biochim Biophys Acta. 1977 May 27;492(1):83–94. doi: 10.1016/0005-2795(77)90216-1. [DOI] [PubMed] [Google Scholar]
- Hollyfield J. G., Rayborn M. E., Sarthy P. V., Lam D. M. The emergence, localization and maturation of neurotransmitter systems during development of the retina in Xenopus laevis. I. Gamma aminobutyric acid. J Comp Neurol. 1979 Dec 15;188(4):587–598. doi: 10.1002/cne.901880406. [DOI] [PubMed] [Google Scholar]
- Hollyfield J. G., Rayborn M. E., Verner G. E., Maude M. B., Anderson R. E. Membrane addition to rod photoreceptor outer segments: light stimulates membrane assembly in the absence of increased membrane biosynthesis. Invest Ophthalmol Vis Sci. 1982 Apr;22(4):417–427. [PubMed] [Google Scholar]
- Hori H., Pan Y. T., Molyneux R. J., Elbein A. D. Inhibition of processing of plant N-linked oligosaccharides by castanospermine. Arch Biochem Biophys. 1984 Feb 1;228(2):525–533. doi: 10.1016/0003-9861(84)90019-5. [DOI] [PubMed] [Google Scholar]
- Hubbard S. C., Ivatt R. J. Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem. 1981;50:555–583. doi: 10.1146/annurev.bi.50.070181.003011. [DOI] [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
- Liang C. J., Yamashita K., Muellenberg C. G., Shichi H., Kobata A. Structure of the carbohydrate moieties of bovine rhodopsin. J Biol Chem. 1979 Jul 25;254(14):6414–6418. [PubMed] [Google Scholar]
- O'Brien P. J. Characteristics of galactosyl and fucosyl transfer to bovine rhodopsin. Exp Eye Res. 1978 Feb;26(2):197–206. doi: 10.1016/0014-4835(78)90117-3. [DOI] [PubMed] [Google Scholar]
- O'Brien P. J. Differential effects of puromycin on the incorporation of precursors of rhodopsin in bovine retina. Biochemistry. 1977 Mar 8;16(5):953–958. doi: 10.1021/bi00624a022. [DOI] [PubMed] [Google Scholar]
- O'Brien P. J. Rhodopsin as a glycoprotein: a possible role for the oligosaccharide in phagocytosis. Exp Eye Res. 1976 Aug;23(2):127–137. doi: 10.1016/0014-4835(76)90196-2. [DOI] [PubMed] [Google Scholar]
- Olden K., Parent J. B., White S. L. Carbohydrate moieties of glycoproteins. A re-evaluation of their function. Biochim Biophys Acta. 1982 May 12;650(4):209–232. doi: 10.1016/0304-4157(82)90017-x. [DOI] [PubMed] [Google Scholar]
- Pan Y. T., Hori H., Saul R., Sanford B. A., Molyneux R. J., Elbein A. D. Castanospermine inhibits the processing of the oligosaccharide portion of the influenza viral hemagglutinin. Biochemistry. 1983 Aug 2;22(16):3975–3984. doi: 10.1021/bi00285a038. [DOI] [PubMed] [Google Scholar]
- Plantner J. J., Kean E. L. Carbohydrate composition of bovine rhodopsin. J Biol Chem. 1976 Mar 25;251(6):1548–1552. [PubMed] [Google Scholar]
- Plantner J. J., Poncz L., Kean E. L. Effect of tunicamycin on the glycosylation of rhodopsin. Arch Biochem Biophys. 1980 May;201(2):527–532. doi: 10.1016/0003-9861(80)90541-x. [DOI] [PubMed] [Google Scholar]
- Saul R., Ghidoni J. J., Molyneux R. J., Elbein A. D. Castanospermine inhibits alpha-glucosidase activities and alters glycogen distribution in animals. Proc Natl Acad Sci U S A. 1985 Jan;82(1):93–97. doi: 10.1073/pnas.82.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwarz R. T., Datema R. The lipid pathway of protein glycosylation and its inhibitors: the biological significance of protein-bound carbohydrates. Adv Carbohydr Chem Biochem. 1982;40:287–379. doi: 10.1016/s0065-2318(08)60111-0. [DOI] [PubMed] [Google Scholar]
- Steinberg R. H., Fisher S. K., Anderson D. H. Disc morphogenesis in vertebrate photoreceptors. J Comp Neurol. 1980 Apr 1;190(3):501–508. doi: 10.1002/cne.901900307. [DOI] [PubMed] [Google Scholar]
- Young R. W. Visual cells and the concept of renewal. Invest Ophthalmol Vis Sci. 1976 Sep;15(9):700–725. [PubMed] [Google Scholar]