Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Sep;83(18):6692–6696. doi: 10.1073/pnas.83.18.6692

Isolation, properties, and complete amino acid sequence of human secretory leukocyte protease inhibitor, a potent inhibitor of leukocyte elastase.

R C Thompson, K Ohlsson
PMCID: PMC386575  PMID: 3462719

Abstract

A potent inhibitor of human leukocyte elastase (EC 3.4.21.37) and cathepsin G (EC 3.4.21.20) and of human trypsin (EC 3.4.21.4) has been purified from human parotid secretions. The complete amino acid sequence of this protein has been determined. The sequence suggests that the protein has two domains of about 54 amino acids, each of which contains four disulfide bonds. On the basis of a limited homology to other protease inhibitors, the antielastase and antitrypsin activities are thought to be properties of the C-terminal and N-terminal domains, respectively. The affinity of the inhibitor for leukocyte elastase is very high, suggesting a functional role for the protein in preventing elastase-mediated damage to oral and possibly other mucosal tissues.

Full text

PDF
6692

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  3. Glynn P., Gilbert H., Newcombe J., Cuzner M. L. Rapid analysis of immunoglobulin isoelectric focusing patterns with cellulose nitrate sheets and immunoperoxidase staining. J Immunol Methods. 1982 Jun 11;51(2):251–257. doi: 10.1016/0022-1759(82)90264-2. [DOI] [PubMed] [Google Scholar]
  4. Hochstrasser K., Haendle H., Reichert R., Werle E. Uber Vorkommen und Eigenschaften eines Proteaseninhibitors in menschlichem Nasensekret. Hoppe Seylers Z Physiol Chem. 1971 Jul;352(7):954–958. [PubMed] [Google Scholar]
  5. Houmard J., Drapeau G. R. Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3506–3509. doi: 10.1073/pnas.69.12.3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jekel P. A., Weijer W. J., Beintema J. J. Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis. Anal Biochem. 1983 Oct 15;134(2):347–354. doi: 10.1016/0003-2697(83)90308-1. [DOI] [PubMed] [Google Scholar]
  7. Klasen E. C., Kramps J. A. The N-terminal sequence of antileukoprotease isolated from bronchial secretion. Biochem Biophys Res Commun. 1985 Apr 16;128(1):285–289. doi: 10.1016/0006-291x(85)91676-6. [DOI] [PubMed] [Google Scholar]
  8. Koop D. R., Morgan E. T., Tarr G. E., Coon M. J. Purification and characterization of a unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits. J Biol Chem. 1982 Jul 25;257(14):8472–8480. [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  11. Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
  12. Ohlsson K. Neutral leucocyte proteases and elastase inhibited by plasma alpha 1 -antitrypsin. Scand J Clin Lab Invest. 1971 Nov;28(3):251–253. doi: 10.3109/00365517109095696. [DOI] [PubMed] [Google Scholar]
  13. Ohlsson K., Olsson A. S. Immunoreactive granulocyte elastase in human serum. Hoppe Seylers Z Physiol Chem. 1978 Nov;359(11):1531–1539. doi: 10.1515/bchm2.1978.359.2.1531. [DOI] [PubMed] [Google Scholar]
  14. Ohlsson K., Olsson I. The neutral proteases of human granulocytes. Isolation and partial characterization of granulocyte elastases. Eur J Biochem. 1974 Mar 1;42(2):519–527. doi: 10.1111/j.1432-1033.1974.tb03367.x. [DOI] [PubMed] [Google Scholar]
  15. Ohlsson K., Tegner H., Akesson U. Isolation and partial characterization of a low molecular weight acid stable protease inhibitor from human bronchial secretion. Hoppe Seylers Z Physiol Chem. 1977 May;358(5):583–589. doi: 10.1515/bchm2.1977.358.1.583. [DOI] [PubMed] [Google Scholar]
  16. Ohlsson M., Fryksmark U., Polling A., Tegner H., Ohlsson K. Localization of antileukoprotease in the parotid and the submandibular salivary glands. Acta Otolaryngol. 1984 Jul-Aug;98(1-2):147–151. doi: 10.3109/00016488409107547. [DOI] [PubMed] [Google Scholar]
  17. Ohlsson M., Rosengren M., Tegner H., Ohlsson K. Quantification of granulocyte elastase inhibitors in human mixed saliva and in pure parotid secretion. Hoppe Seylers Z Physiol Chem. 1983 Sep;364(9):1323–1328. doi: 10.1515/bchm2.1983.364.2.1323. [DOI] [PubMed] [Google Scholar]
  18. Schenkein I., Levy M., Franklin E. C., Frangione B. Proteolytic enzymes from the mouse submaxillary gland. Specificity restricted to arginine residues. Arch Biochem Biophys. 1977 Jul;182(1):64–70. doi: 10.1016/0003-9861(77)90283-1. [DOI] [PubMed] [Google Scholar]
  19. Seemüller U., Arnhold M., Fritz H., Wiedenmann K., Machleidt W., Heinzel R., Appelhans H., Gassen H. G., Lottspeich F. The acid-stable proteinase inhibitor of human mucous secretions (HUSI-I, antileukoprotease). Complete amino acid sequence as revealed by protein and cDNA sequencing and structural homology to whey proteins and Red Sea turtle proteinase inhibitor. FEBS Lett. 1986 Apr 7;199(1):43–48. doi: 10.1016/0014-5793(86)81220-0. [DOI] [PubMed] [Google Scholar]
  20. Smith C. E., Johnson D. A. Human bronchial leucocyte proteinase inhibitor. Rapid isolation and kinetic analysis with human leucocyte proteinases. Biochem J. 1985 Jan 15;225(2):463–472. doi: 10.1042/bj2250463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wallner O., Fritz H. Characterization of an acid-stable proteinase inhibitor in human cervical mucus. Hoppe Seylers Z Physiol Chem. 1974 Jun;355(6):709–715. doi: 10.1515/bchm2.1974.355.1.709. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES