Abstract
Molecular and fragment ion data of intact 8- to 43-kDa proteins from electrospray Fourier-transform tandem mass spectrometry are matched against the corresponding data in sequence data bases. Extending the sequence tag concept of Mann and Wilm for matching peptides, a partial amino acid sequence in the unknown is first identified from the mass differences of a series of fragment ions, and the mass position of this sequence is defined from molecular weight and the fragment ion masses. For three studied proteins, a single sequence tag retrieved only the correct protein from the data base; a fourth protein required the input of two sequence tags. However, three of the data base proteins differed by having an extra methionine or by missing an acetyl or heme substitution. The positions of these modifications in the protein examined were greatly restricted by the mass differences of its molecular and fragment ions versus those of the data base. To characterize the primary structure of an unknown represented in the data base, this method is fast and specific and does not require prior enzymatic or chemical degradation.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Celis J. E., Rasmussen H. H., Gromov P., Olsen E., Madsen P., Leffers H., Honoré B., Dejgaard K., Vorum H., Kristensen D. B. The human keratinocyte two-dimensional gel protein database (update 1995): mapping components of signal transduction pathways. Electrophoresis. 1995 Dec;16(12):2177–2240. doi: 10.1002/elps.11501601355. [DOI] [PubMed] [Google Scholar]
- Collins F. S. Ahead of schedule and under budget: the Genome Project passes its fifth birthday. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10821–10823. doi: 10.1073/pnas.92.24.10821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietrich W. F., Copeland N. G., Gilbert D. J., Miller J. C., Jenkins N. A., Lander E. S. Mapping the mouse genome: current status and future prospects. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10849–10853. doi: 10.1073/pnas.92.24.10849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fenn J. B., Mann M., Meng C. K., Wong S. F., Whitehouse C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 Oct 6;246(4926):64–71. doi: 10.1126/science.2675315. [DOI] [PubMed] [Google Scholar]
- Guyer M. S., Collins F. S. How is the Human Genome Project doing, and what have we learned so far? Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10841–10848. doi: 10.1073/pnas.92.24.10841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henzel W. J., Billeci T. M., Stults J. T., Wong S. C., Grimley C., Watanabe C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5011–5015. doi: 10.1073/pnas.90.11.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillenkamp F., Karas M., Beavis R. C., Chait B. T. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991 Dec 15;63(24):1193A–1203A. doi: 10.1021/ac00024a002. [DOI] [PubMed] [Google Scholar]
- James P., Quadroni M., Carafoli E., Gonnet G. Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun. 1993 Aug 31;195(1):58–64. doi: 10.1006/bbrc.1993.2009. [DOI] [PubMed] [Google Scholar]
- Karas M., Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299–2301. doi: 10.1021/ac00171a028. [DOI] [PubMed] [Google Scholar]
- Little D. P., Speir J. P., Senko M. W., O'Connor P. B., McLafferty F. W. Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem. 1994 Sep 15;66(18):2809–2815. doi: 10.1021/ac00090a004. [DOI] [PubMed] [Google Scholar]
- Loo J. A., Edmonds C. G., Smith R. D. Tandem mass spectrometry of very large molecules: serum albumin sequence information from multiply charged ions formed by electrospray ionization. Anal Chem. 1991 Nov 1;63(21):2488–2499. doi: 10.1021/ac00021a018. [DOI] [PubMed] [Google Scholar]
- Mann M., Højrup P., Roepstorff P. Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom. 1993 Jun;22(6):338–345. doi: 10.1002/bms.1200220605. [DOI] [PubMed] [Google Scholar]
- Mann M., Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem. 1994 Dec 15;66(24):4390–4399. doi: 10.1021/ac00096a002. [DOI] [PubMed] [Google Scholar]
- Mørtz E., Vorm O., Mann M., Roepstorff P. Identification of proteins in polyacrylamide gels by mass spectrometric peptide mapping combined with database search. Biol Mass Spectrom. 1994 May;23(5):249–261. doi: 10.1002/bms.1200230503. [DOI] [PubMed] [Google Scholar]
- Pappin D. J., Hojrup P., Bleasby A. J. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol. 1993 Jun 1;3(6):327–332. doi: 10.1016/0960-9822(93)90195-t. [DOI] [PubMed] [Google Scholar]
- Patterson S. D., Aebersold R. Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis. 1995 Oct;16(10):1791–1814. doi: 10.1002/elps.11501601299. [DOI] [PubMed] [Google Scholar]
- Rasmussen H. H., Mørtz E., Mann M., Roepstorff P., Celis J. E. Identification of transformation sensitive proteins recorded in human two-dimensional gel protein databases by mass spectrometric peptide mapping alone and in combination with microsequencing. Electrophoresis. 1994 Mar-Apr;15(3-4):406–416. doi: 10.1002/elps.1150150159. [DOI] [PubMed] [Google Scholar]
- Roepstorff P., Fohlman J. Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom. 1984 Nov;11(11):601–601. doi: 10.1002/bms.1200111109. [DOI] [PubMed] [Google Scholar]
- Senko M. W., Speir J. P., McLafferty F. W. Collisional activation of large multiply charged ions using Fourier transform mass spectrometry. Anal Chem. 1994 Sep 15;66(18):2801–2808. doi: 10.1021/ac00090a003. [DOI] [PubMed] [Google Scholar]
- Smith R. D., Loo J. A., Edmonds C. G., Barinaga C. J., Udseth H. R. New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem. 1990 May 1;62(9):882–899. doi: 10.1021/ac00208a002. [DOI] [PubMed] [Google Scholar]
- Valaskovic G. A., Kelleher N. L., Little D. P., Aaserud D. J., McLafferty F. W. Attomole-sensitivity electrospray source for large-molecule mass spectrometry. Anal Chem. 1995 Oct 15;67(20):3802–3805. doi: 10.1021/ac00116a030. [DOI] [PubMed] [Google Scholar]
- Wilm M., Shevchenko A., Houthaeve T., Breit S., Schweigerer L., Fotsis T., Mann M. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature. 1996 Feb 1;379(6564):466–469. doi: 10.1038/379466a0. [DOI] [PubMed] [Google Scholar]
- Wood T. D., Chen L. H., White C. B., Babbitt P. C., Kenyon G. L., McLafferty F. W. Sequence verification of human creatine kinase (43 kDa) isozymes by high-resolution tandem mass spectrometry. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11451–11455. doi: 10.1073/pnas.92.25.11451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yates J. R., 3rd, Speicher S., Griffin P. R., Hunkapiller T. Peptide mass maps: a highly informative approach to protein identification. Anal Biochem. 1993 Nov 1;214(2):397–408. doi: 10.1006/abio.1993.1514. [DOI] [PubMed] [Google Scholar]