Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Sep;83(18):6746–6750. doi: 10.1073/pnas.83.18.6746

The association of NADPH with the guanine nucleotide exchange factor from rabbit reticulocytes: a role of pyridine dinucleotides in eukaryotic polypeptide chain initiation.

J N Dholakia, T C Mueser, C L Woodley, L J Parkhurst, A J Wahba
PMCID: PMC386586  PMID: 3462724

Abstract

The guanine nucleotide exchange factor (GEF) was purified to apparent homogeneity from postribosomal supernatants of rabbit reticulocytes by chromatography on DEAE-cellulose and phosphocellulose, fractionation by glycerol gradients, and chromatography on Mono S and Mono Q (Pharmacia). At the Mono S step GEF is isolated as a complex with the eukaryotic polypeptide chain initiation factor 2 (eIF-2) and is separated from this factor by column chromatography on Mono Q. An emission spectrum characteristic of a reduced pyridine dinucleotide was observed when GEF was subjected to fluorescence analysis. By both coupled enzymatic analysis and chromatography on reverse-phase or Mono Q columns, the bound dinucleotide associated with GEF was determined to be NADPH. The GEF-catalyzed exchange of eIF-2-bound GDP for GTP was markedly inhibited by NAD+ and NADP+. This inhibition was not observed in the presence of equimolar concentrations of NADPH. Similarly, the stimulation of ternary complex (eIF-2 X GTP X Met-tRNAf) formation by GEF in the presence of 1 mM Mg2+ was abolished in the presence of oxidized pyridine dinucleotide. These results demonstrate that pyridine dinucleotides may be directly involved in the regulation of polypeptide chain initiation by acting as allosteric regulators of GEF activity.

Full text

PDF
6746

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balkow K., Hunt T., Jackson R. J. Control of protein synthesis in reticulocyte lysates: the effect of nucleotide triphosphates on formation of the translational repressor. Biochem Biophys Res Commun. 1975 Nov 3;67(1):366–375. doi: 10.1016/0006-291x(75)90325-3. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Clemens M. J., Pain V. M., Wong S. T., Henshaw E. C. Phosphorylation inhibits guanine nucleotide exchange on eukaryotic initiation factor 2. Nature. 1982 Mar 4;296(5852):93–95. doi: 10.1038/296093a0. [DOI] [PubMed] [Google Scholar]
  4. Dasgupta A., Roy R., Palmieri S., Das A., Ralston R., Gupta N. K. Protein synthesis in rabbit reticulocytes XXII+: a heat stable dialyzable factor (EIF-I*) modulates Met-tRNAf binding to EIF-1. Biochem Biophys Res Commun. 1978 Jun 14;82(3):1019–1027. doi: 10.1016/0006-291x(78)90885-9. [DOI] [PubMed] [Google Scholar]
  5. Ernst V., Levin D. H., London I. M. Evidence that glucose 6-phosphate regulates protein synthesis initiation in reticulocyte lysates. J Biol Chem. 1978 Oct 25;253(20):7163–7172. [PubMed] [Google Scholar]
  6. Ernst V., Levin D. H., Ranu R. S., London I. M. Control of protein synthesis in reticulocyte lysates: effects of 3':5'-cyclic AMP, ATP, and GTP on inhibitions induced by hemedeficiency, double-stranded RNA, and a reticulocyte translationa inhibitor. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1112–1116. doi: 10.1073/pnas.73.4.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farrell P. J., Balkow K., Hunt T., Jackson R. J., Trachsel H. Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell. 1977 May;11(1):187–200. doi: 10.1016/0092-8674(77)90330-0. [DOI] [PubMed] [Google Scholar]
  8. Geraci G., Gibson Q. H. The reaction of liver alcohol dehydrogenase with reduced diphosphopyridine nucleotide. J Biol Chem. 1967 Sep 25;242(18):4275–4278. [PubMed] [Google Scholar]
  9. Goss D. J., Parkhurst L. J., Mehta H. B., Woodley C. L., Wahba A. J. Studies on the role of eukaryotic nucleotide exchange factor in polypeptide chain initiation. J Biol Chem. 1984 Jun 25;259(12):7374–7377. [PubMed] [Google Scholar]
  10. Holbrook J. J., Yates D. W., Reynolds S. J., Evans R. W., Greenwood C., Gore M. G. Protein fluorescence of nicotinamide nucleotide-dependent dehydrogenases. Biochem J. 1972 Jul;128(4):933–940. doi: 10.1042/bj1280933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hunt T., Herbert P., Campbell E. A., Delidakis C., Jackson R. J. The use of affinity chromatography on 2'5' ADP-sepharose reveals a requirement for NADPH, thioredoxin and thioredoxin reductase for the maintenance of high protein synthesis activity in rabbit reticulocyte lysates. Eur J Biochem. 1983 Mar 15;131(2):303–311. doi: 10.1111/j.1432-1033.1983.tb07263.x. [DOI] [PubMed] [Google Scholar]
  12. Jackson R. J., Herbert P., Campbell E. A., Hunt T. The roles of sugar phosphates and thiol-reducing systems in the control of reticulocyte protein synthesis. Eur J Biochem. 1983 Mar 15;131(2):313–324. doi: 10.1111/j.1432-1033.1983.tb07264.x. [DOI] [PubMed] [Google Scholar]
  13. Jagus R., Safer B. Activity of eukaryotic initiation factor 2 is modified by processes distinct from phosphorylation. I. Activities of eukaryotic initiation factor 2 and eukaryotic initiation factor 2 alpha kinase in lysate gel filtered under different conditions. J Biol Chem. 1981 Feb 10;256(3):1317–1323. [PubMed] [Google Scholar]
  14. Jagus R., Safer B. Activity of eukaryotic initiation factor 2 is modified by processes distinct from phosphorylation. II. Activity of eukaryotic initiation factor 2 in lysate is modified by oxidation-reduction state of its sulfhydryl groups. J Biol Chem. 1981 Feb 10;256(3):1324–1329. [PubMed] [Google Scholar]
  15. Jørgensen B. M., Rasmussen H. N. Recycling analysis of nicotinamide-adenine dinucleotide phosphates (NADP and NADPH). Anal Biochem. 1979 Nov 1;99(2):297–303. doi: 10.1016/s0003-2697(79)80010-x. [DOI] [PubMed] [Google Scholar]
  16. Konieczny A., Safer B. Purification of the eukaryotic initiation factor 2-eukaryotic initiation factor 2B complex and characterization of its guanine nucleotide exchange activity during protein synthesis initiation. J Biol Chem. 1983 Mar 10;258(5):3402–3408. [PubMed] [Google Scholar]
  17. Kosower N. S., Vanderhoff G. A., Benerofe B., Hunt T., Kosower E. M. Inhibition of protein synthesis by glutathione disulfide in the presence of glutathione. Biochem Biophys Res Commun. 1971 Nov 5;45(3):816–821. doi: 10.1016/0006-291x(71)90490-6. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Laws W. R., Shore J. D. The mechanism of quenching of liver alcohol dehydrogenase fluorescence due to ternary complex formation. J Biol Chem. 1978 Dec 10;253(23):8593–8597. [PubMed] [Google Scholar]
  20. Legon S., Jackson R. J., Hunt T. Control of protein synthesis in reticulocyte lysates by haemin. Nat New Biol. 1973 Jan 31;241(109):150–152. doi: 10.1038/newbio241150a0. [DOI] [PubMed] [Google Scholar]
  21. Levin D. H., Petryshyn R., London I. M. Characterization of double-stranded-RNA-activated kinase that phosphorylates alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) in reticulocyte lysates. Proc Natl Acad Sci U S A. 1980 Feb;77(2):832–836. doi: 10.1073/pnas.77.2.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Luisi P. L., Favilla R. Tryptophan fluorescence quenching in horse liver alcohol dehydrogenase. Eur J Biochem. 1970 Nov;17(1):91–94. doi: 10.1111/j.1432-1033.1970.tb01139.x. [DOI] [PubMed] [Google Scholar]
  23. Matts R. L., Levin D. H., London I. M. Effect of phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 on the function of reversing factor in the initiation of protein synthesis. Proc Natl Acad Sci U S A. 1983 May;80(9):2559–2563. doi: 10.1073/pnas.80.9.2559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matts R. L., Levin D. H., London I. M. Fate of reversing factor during restoration of protein synthesis by hemin or GTP in heme-deficient reticulocyte lysates. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1217–1221. doi: 10.1073/pnas.83.5.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mehta H. B., Woodley C. L., Wahba A. J. Protein synthesis in brine shrimp embryos and rabbit reticulocytes. The effect of Mg2+ on binary (eukaryotic initiation factor 2 X GDP) and ternary (eukaryotic initiation factor 2 X GTP X met-tRNAf) complex formation. J Biol Chem. 1983 Mar 25;258(6):3438–3441. [PubMed] [Google Scholar]
  26. Orr G. A., Blanchard J. S. High-performance ion-exchange separation of oxidized and reduced nicotinamide adenine dinucleotides. Anal Biochem. 1984 Oct;142(1):232–234. doi: 10.1016/0003-2697(84)90544-x. [DOI] [PubMed] [Google Scholar]
  27. Palomo C., Vicente O., Sierra J. M., Ochoa S. Studies on the activation of the heme-stabilized translational inhibitor of reticulocyte lysates by oxidized glutathione and NADPH depletion. Arch Biochem Biophys. 1985 Jun;239(2):497–507. doi: 10.1016/0003-9861(85)90718-0. [DOI] [PubMed] [Google Scholar]
  28. Panniers R., Henshaw E. C. A GDP/GTP exchange factor essential for eukaryotic initiation factor 2 cycling in Ehrlich ascites tumor cells and its regulation by eukaryotic initiation factor 2 phosphorylation. J Biol Chem. 1983 Jul 10;258(13):7928–7934. [PubMed] [Google Scholar]
  29. Ranu R. S. Regulation of protein synthesis in rabbit reticulocyte lysates: purification and initial characterization of the double stranded RNA activated protein kinase. Biochem Biophys Res Commun. 1980 Nov 17;97(1):252–262. doi: 10.1016/s0006-291x(80)80162-8. [DOI] [PubMed] [Google Scholar]
  30. Salimans M., Goumans H., Amesz H., Benne R., Voorma H. O. Regulation of protein synthesis in eukaryotes. Mode of action of eRF, an eIF-2-recycling factor from rabbit reticulocytes involved in GDP/GTP exchange. Eur J Biochem. 1984 Nov 15;145(1):91–98. doi: 10.1111/j.1432-1033.1984.tb08526.x. [DOI] [PubMed] [Google Scholar]
  31. Siekierka J., Mauser L., Ochoa S. Mechanism of polypeptide chain initiation in eukaryotes and its control by phosphorylation of the alpha subunit of initiation factor 2. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2537–2540. doi: 10.1073/pnas.79.8.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Siekierka J., Mauser L., Ochoa S. Mechanism of polypeptide chain initiation in eukaryotes and its control by phosphorylation of the alpha subunit of initiation factor 2. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2537–2540. doi: 10.1073/pnas.79.8.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stocchi V., Cucchiarini L., Magnani M., Chiarantini L., Palma P., Crescentini G. Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem. 1985 Apr;146(1):118–124. doi: 10.1016/0003-2697(85)90405-1. [DOI] [PubMed] [Google Scholar]
  34. Trachsel H., Staehelin T. Binding and release of eukaryotic initiation factor eIF-2 and GTP during protein synthesis initiation. Proc Natl Acad Sci U S A. 1978 Jan;75(1):204–208. doi: 10.1073/pnas.75.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Walton G. M., Gill G. N. Nucleotide regulation of a eukaryotic protein synthesis initiation complex;. Biochim Biophys Acta. 1975 May 1;390(2):231–245. doi: 10.1016/0005-2787(75)90344-5. [DOI] [PubMed] [Google Scholar]
  36. Wu J. M., Cheung C. P., Suhadolnik R. J. Stimulation of the protein synthetic process by adenosine 3':5'-monophosphate and hexose phosphates in gel-filtered rabbit reticulocyte lysates. J Biol Chem. 1978 Dec 10;253(23):8578–8582. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES