Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Sep;83(18):6829–6833. doi: 10.1073/pnas.83.18.6829

Loss of intercalated membrane particles by treatment with phorbols.

D Zucker-Franklin, Z F Nabi
PMCID: PMC386603  PMID: 3462729

Abstract

Because brief exposure to phorbol esters renders normal cells vulnerable to deformation and cytolysis by lymphocytes, it was postulated that these tumor promoters might cause a hitherto unrecognized physical alteration in membrane architecture. To investigate this possibility, four tissue culture cell lines (K-562 erythroleukemia cells, melanoma cells, N1121 adult fibroblasts, and normal fetal fibroblasts) and three blood cell types (lymphocytes, monocytes, and platelets) were subjected to freeze-fracture analysis before and after brief treatment with phorbol myristate acetate. Phorbol myristate acetate caused a 50% reduction of intramembranous particles associated with the external leaflet (E face) of the plasma membrane of every cell except platelets. In contrast, no change in size or number of intramembranous particles associated with the protoplasmic membrane leaflet (P face) was evident. Since the platelet membrane is known to be turned "inside out," as regards the partition coefficient of the intramembranous particles, the disparity between the results obtained with platelets and other cells may serve to determine the nature of intramembranous particles affected by phorbols. Also, since phorbols affect primarily glycolipids and/or glycoproteins anchored in the external membrane leaflet, these findings may provide a useful tool for future exploration of membrane structure.

Full text

PDF
6829

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett V. Isolation of an ankyrin-band 3 oligomer from human erythrocyte membranes. Biochim Biophys Acta. 1982 Aug 12;689(3):475–484. doi: 10.1016/0005-2736(82)90305-4. [DOI] [PubMed] [Google Scholar]
  2. Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bretscher M. S. Phosphatidyl-ethanolamine: differential labelling in intact cells and cell ghosts of human erythrocytes by a membrane-impermeable reagent. J Mol Biol. 1972 Nov 28;71(3):523–528. doi: 10.1016/s0022-2836(72)80020-2. [DOI] [PubMed] [Google Scholar]
  4. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  5. Chevalier J., Nurden A. T., Thiery J. M., Savariau E., Caen J. P. Freeze-fracture studies on the plasma membranes of normal human, thrombasthenic, and Bernard-Soulier platelets. J Lab Clin Med. 1979 Aug;94(2):232–245. [PubMed] [Google Scholar]
  6. Douglas S. D., Ooka M. P., Zuckerman S. H. Effect of cholera toxin on intramembranous particles of a murine lymphoid cell line. Exp Cell Res. 1976 Aug;101(1):111–121. doi: 10.1016/0014-4827(76)90419-5. [DOI] [PubMed] [Google Scholar]
  7. Estensen R. D., White J. G. Ultrastructural features on the platelet response to phorbol myristate acetate. Am J Pathol. 1974 Mar;74(3):441–452. [PMC free article] [PubMed] [Google Scholar]
  8. Fujinami N., Zucker-Franklin D., Valentine F. Interaction of mononuclear leukocytes with malignant melanoma. Lab Invest. 1981 Jul;45(1):28–37. [PubMed] [Google Scholar]
  9. Hasty D. L., Hay E. D. Freeze-fracture studies of the developing cell surface. I. The plasmalemma of the corneal fibroblast. J Cell Biol. 1977 Mar;72(3):667–686. doi: 10.1083/jcb.72.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kemp S. F., Stoolmiller A. C. Biosynthesis of glycosphingolipids in cultured mouse neuroblastoma cells. Precursor-product relationships among sialoglycosphingolipids. J Biol Chem. 1976 Dec 10;251(23):7626–7631. [PubMed] [Google Scholar]
  11. Kielian M. C., Cohn Z. A. Phorbol myristate acetate stimulates phagosome-lysosome fusion in mouse macrophages. J Exp Med. 1981 Jul 1;154(1):101–111. doi: 10.1084/jem.154.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kwong C. H., Mueller G. C. Antagonism of concanavalin A capping in phorbol ester-activated lymphocytes by calmodulin inhibitors and certain amino acid esters. Cancer Res. 1982 Jun;42(6):2115–2120. [PubMed] [Google Scholar]
  13. McIntyre J. A., Gilula N. B., Karnovsky M. J. Cryoprotectant-induced redistribution of intramembranous particles in mouse lymphocytes. J Cell Biol. 1974 Jan;60(1):192–203. doi: 10.1083/jcb.60.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nabi Z. F., Zucker-Franklin D. Phorbol-induced recruitment of lymphocytes for spontaneous cytolysis of natural killer-insensitive tumor targets. Cell Immunol. 1986 Jul;100(2):485–500. doi: 10.1016/0008-8749(86)90047-x. [DOI] [PubMed] [Google Scholar]
  15. Niedel J. E., Kuhn L. J., Vandenbark G. R. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci U S A. 1983 Jan;80(1):36–40. doi: 10.1073/pnas.80.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  17. Patarroyo M., Yogeeswaran G., Biberfeld P., Klein E., Klein G. Morphological changes, cell aggregation and cell membrane alterations caused by phorbol 12,13-dibutyrate in human blood lymphocytes. Int J Cancer. 1982 Dec 15;30(6):707–717. doi: 10.1002/ijc.2910300606. [DOI] [PubMed] [Google Scholar]
  18. Pinto da Silva P., Kan F. W. Label-fracture: a method for high resolution labeling of cell surfaces. J Cell Biol. 1984 Sep;99(3):1156–1161. doi: 10.1083/jcb.99.3.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schick P. K., Kurica K. B., Chacko G. K. Location of phosphatidylethanolamine and phosphatidylserine in the human platelet plasma membrane. J Clin Invest. 1976 May;57(5):1221–1226. doi: 10.1172/JCI108390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scott R. E., Marchesi V. T. Structural changes in membranes of transformed lymphocytes demonstrated by freeze-etching. Cell Immunol. 1972 Feb;3(2):301–317. doi: 10.1016/0008-8749(72)90169-4. [DOI] [PubMed] [Google Scholar]
  22. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yogeeswaran G., Gronberg A., Hansson M., Dalianis T., Kiessling R., Welsh R. M. Correlation of glycosphingolipids and sialic acid in YAC-1 lymphoma variants with their sensitivity to natural killer-cell-mediated lysis. Int J Cancer. 1981 Oct 15;28(4):517–526. doi: 10.1002/ijc.2910280419. [DOI] [PubMed] [Google Scholar]
  24. Zerlauth G., Wolf G. Kinetics of fibronectin release from fibroblasts in response to 12-O-tetradecanoylphorbol-13-acetate and retinoic acid. Carcinogenesis. 1984 Jul;5(7):863–868. doi: 10.1093/carcin/5.7.863. [DOI] [PubMed] [Google Scholar]
  25. Zucker-Franklin D. Endocytosis by human platelets: metabolic and freeze-fracture studies. J Cell Biol. 1981 Dec;91(3 Pt 1):706–715. doi: 10.1083/jcb.91.3.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zucker-Franklin D., Liebes L. F., Silber R. Differences in the behavior of the membrane and membrane-associated filamentous structures in normal and chronic lymphocytic leukemia (CLL) lymphocytes. J Immunol. 1979 Jan;122(1):97–107. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES