Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Sep;83(18):7044–7048. doi: 10.1073/pnas.83.18.7044

Glycoconjugates as noninvasive probes of intrahepatic metabolism: pathways of glucose entry into compartmentalized hepatic UDP-glucose pools during glycogen accumulation.

M K Hellerstein, D J Greenblatt, H N Munro
PMCID: PMC386649  PMID: 3462741

Abstract

Recent studies have questioned the efficiency with which administered glucose generates hepatic glycogen through the direct nonrecycling route compared with the indirect route from glucose recycled through glycolysis followed by gluconeogenesis. Using fasted and refed rats, we examined the relative access of infused [1-3H]- and [U-14C]glucose by way of these two pathways to liver glycogen and to hepatic glucuronic acid, the latter recovered from the urine as the glucuronide conjugated with administered acetaminophen. In fasted animals and during early refeeding, extensive dilution of administered [3H]- and [14C]glucose recovered in glycogen showed that 60-70% of the labeled glucose had undergone recycling by the indirect route. As refeeding progressed with substantial glycogen deposition, the contribution of the recycling pathway to glycogen and glucuronic acid diminished considerably. Thus, there is a shift in pathways of hepatic glucose utilization as liver glycogen accumulates. Consequently, the ratio of 3H/14C in glucuronic acid was closely correlated with the glycogen content of the liver at sacrifice, indicating that this ratio may prove useful as a noninvasive indicator of liver glycogen concentration. Since glycogen and glucuronic acid are derived by single reactions from UDP-glucose, they should show a common labeling pattern with 3H and 14C under various nutritional conditions. However, detailed analysis of their labeling patterns showed a striking divergence, implying that there must be compartmentation of the UDP-glucose pools leading to each of these end products, either because they are made in separate compartments within the same cell or because each is made in different hepatocyte populations. We favor the former explanation because galactose secreted in glycoproteins shows 3H and 14C labeling patterns similar to those of glucuronic acid conjugated with acetaminophen, and both of these conjugations occur in the endoplasmic reticulum of the liver, whereas most glycogen is present in the cytosol.

Full text

PDF
7044

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker N. Measurement of glucose recycling and liver glycogen synthesis in mice using doubly labeled substrates. Fed Proc. 1977 Feb;36(2):253–258. [PubMed] [Google Scholar]
  2. Boyd M. E., Albright E. B., Foster D. W., McGarry J. D. In vitro reversal of the fasting state of liver metabolism in the rat. Reevaluation of the roles of insulin and glucose. J Clin Invest. 1981 Jul;68(1):142–152. doi: 10.1172/JCI110230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COOK M., LORBER V. Conversion of 1-C14-Mannose and 1-C14-glucose to liver and muscle glycogen in the intact rat. J Biol Chem. 1952 Nov;199(1):1–8. [PubMed] [Google Scholar]
  4. Ching R., Geddes R., Simpson S. A. Compartmentation of glycogen metabolism in the liver. Carbohydr Res. 1985 Jun 15;139:285–291. doi: 10.1016/0008-6215(85)90027-8. [DOI] [PubMed] [Google Scholar]
  5. Chowdhury J. R., Novikoff P. M., Chowdhury N. R., Novikoff A. B. Distribution of UDPglucuronosyltransferase in rat tissue. Proc Natl Acad Sci U S A. 1985 May;82(9):2990–2994. doi: 10.1073/pnas.82.9.2990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark D. G., Rognstad R., Katz J. Lipogenesis in rat hepatocytes. J Biol Chem. 1974 Apr 10;249(7):2028–2036. [PubMed] [Google Scholar]
  7. Claus T. H., Nyfeler F., Muenkel H. A., Burns M. G., Pilkis S. J. Changes in fructose-2,6-bisphosphate levels after glucose loading of starved rats. Biochem Biophys Res Commun. 1984 Jul 31;122(2):529–534. doi: 10.1016/s0006-291x(84)80065-0. [DOI] [PubMed] [Google Scholar]
  8. Dunn A., Chenoweth M., Schaeffer L. D. Estimation of glucose turnover and the Cori cycle using glucose-6-t-14C. Biochemistry. 1967 Jan;6(1):6–11. doi: 10.1021/bi00853a002. [DOI] [PubMed] [Google Scholar]
  9. FOSTER D. W., BLOOM B. A comparative study of reduced di- and triphosphopyridine nucleotides in the intact cell. J Biol Chem. 1961 Sep;236:2548–2551. [PubMed] [Google Scholar]
  10. HERS H. G. The conversion of fructose-1-C14 and sorbitol-1-C14 to liver and muscle glycogen in the rat. J Biol Chem. 1955 May;214(1):373–381. [PubMed] [Google Scholar]
  11. Hartiala K. Metabolism of hormones, drugs and other substances by the gut. Physiol Rev. 1973 Apr;53(2):496–534. doi: 10.1152/physrev.1973.53.2.496. [DOI] [PubMed] [Google Scholar]
  12. Hartmann F., Bissell D. M. Metabolism of heme and bilirubin in rat and human small intestinal mucosa. J Clin Invest. 1982 Jul;70(1):23–29. doi: 10.1172/JCI110598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hems D. A., Whitton P. D., Taylor E. A. Glycogen synthesis in the perfused liver of the starved rat. Biochem J. 1972 Sep;129(3):529–538. doi: 10.1042/bj1290529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hostetler K. Y., Landau B. R. Estimation of the pentose cycle contribution to glucose metabolism in tissue in vivo. Biochemistry. 1967 Oct;6(10):2961–2964. doi: 10.1021/bi00862a001. [DOI] [PubMed] [Google Scholar]
  15. Katz J., Golden S., Wals P. A. Glycogen synthesis by rat hepatocytes. Biochem J. 1979 May 15;180(2):389–402. doi: 10.1042/bj1800389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Katz J., McGarry J. D. The glucose paradox. Is glucose a substrate for liver metabolism? J Clin Invest. 1984 Dec;74(6):1901–1909. doi: 10.1172/JCI111610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katz L. D., Glickman M. G., Rapoport S., Ferrannini E., DeFronzo R. A. Splanchnic and peripheral disposal of oral glucose in man. Diabetes. 1983 Jul;32(7):675–679. doi: 10.2337/diab.32.7.675. [DOI] [PubMed] [Google Scholar]
  18. Kuwajima M., Golden S., Katz J., Unger R. H., Foster D. W., McGarry J. D. Active hepatic glycogen synthesis from gluconeogenic precursors despite high tissue levels of fructose 2,6-bisphosphate. J Biol Chem. 1986 Feb 25;261(6):2632–2637. [PubMed] [Google Scholar]
  19. Kuwajima M., Newgard C. B., Foster D. W., McGarry J. D. Time course and significance of changes in hepatic fructose-2,6-bisphosphate levels during refeeding of fasted rats. J Clin Invest. 1984 Sep;74(3):1108–1111. doi: 10.1172/JCI111479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LANGDON R. G., TAYLOR W. R. Intestinal absorption of glucose in the rat. Biochim Biophys Acta. 1956 Aug;21(2):384–385. doi: 10.1016/0006-3002(56)90027-0. [DOI] [PubMed] [Google Scholar]
  21. MARKS P. A., FEIGELSON P. Pathways of glycogen formation in liver and skeletal muscle in fed and fasted rats. J Clin Invest. 1957 Aug;36(8):1279–1284. doi: 10.1172/JCI103525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maehlum S., Jervell J., Pruett E. D. Arterial-hepatic vein glucose differences in normal and diabetic man after a glucose infusion at rest and after exercise. Scand J Clin Lab Invest. 1976 Sep;36(5):415–422. doi: 10.3109/00365517609054458. [DOI] [PubMed] [Google Scholar]
  23. Newgard C. B., Hirsch L. J., Foster D. W., McGarry J. D. Studies on the mechanism by which exogenous glucose is converted into liver glycogen in the rat. A direct or an indirect pathway? J Biol Chem. 1983 Jul 10;258(13):8046–8052. [PubMed] [Google Scholar]
  24. Newgard C. B., Moore S. V., Foster D. W., McGarry J. D. Efficient hepatic glycogen synthesis in refeeding rats requires continued carbon flow through the gluconeogenic pathway. J Biol Chem. 1984 Jun 10;259(11):6958–6963. [PubMed] [Google Scholar]
  25. Olavarria J. M., Gödeken O. G., Sandruss R., Flawia M. Recovery of the liver glycogen in fasted rats. Biochim Biophys Acta. 1968 Aug 6;165(1):183–188. [PubMed] [Google Scholar]
  26. Radziuk J., McDonald T. J., Rubenstein D., Dupre J. Initial splanchnic extraction of ingested glucose in normal man. Metabolism. 1978 Jun;27(6):657–669. doi: 10.1016/0026-0495(78)90003-3. [DOI] [PubMed] [Google Scholar]
  27. Salmon D. M., Bowen N. L., Hems D. A. Synthesis of fatty acids in the perused mouse liver. Biochem J. 1974 Sep;142(3):611–618. doi: 10.1042/bj1420611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Scofield R. F., Kosugi K., Schumann W. C., Kumaran K., Landau B. R. Quantitative estimation of the pathways followed in the conversion to glycogen of glucose administered to the fasted rat. J Biol Chem. 1985 Jul 25;260(15):8777–8782. [PubMed] [Google Scholar]
  29. Shikama H., Ui M. Glucose load diverts hepatic gluconeogenic product from glucose to glycogen in vivo. Am J Physiol. 1978 Oct;235(4):E354–E360. doi: 10.1152/ajpendo.1978.235.4.E354. [DOI] [PubMed] [Google Scholar]
  30. Shulman G. I., Rothman D. L., Smith D., Johnson C. M., Blair J. B., Shulman R. G., DeFronzo R. A. Mechanism of liver glycogen repletion in vivo by nuclear magnetic resonance spectroscopy. J Clin Invest. 1985 Sep;76(3):1229–1236. doi: 10.1172/JCI112078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sugden M. C., Watts D. I., Palmer T. N., Myles D. D. Direction of carbon flux in starvation and after refeeding: in vitro and in vivo effects of 3-mercaptopicolinate. Biochem Int. 1983 Sep;7(3):329–337. [PubMed] [Google Scholar]
  32. Winzler R. J., Devor A. W., Mehl J. W., Smyth I. M. STUDIES ON THE MUCOPROTEINS OF HUMAN PLASMA. I. DETERMINATION AND ISOLATION. J Clin Invest. 1948 Sep;27(5):609–616. doi: 10.1172/JCI102006. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES