Skip to main content
Parasite logoLink to Parasite
. 2013 Dec 19;20:56. doi: 10.1051/parasite/2013055

Bucephalidae (Digenea) from epinephelines (Serranidae: Perciformes) from the waters off New Caledonia, including Neidhartia lochepintade n. sp.

Bucephalidae (Digenea) d’Epinephelinae (Serranidae: Perciformes) en Nouvelle-Calédonie, y compris Neidhartia lochepintade n. sp.

Rodney A Bray 1,*, Jean-Lou Justine 2,a
PMCID: PMC3867101  PMID: 24351242

Abstract

Many bucephalid species, mainly of the subfamily Prosorhynchinae, have been described from epinepheline serranids (groupers) throughout the World’s Oceans. In this paper eight named prosorhynchine species are described and/or illustrated from epinepheline fishes from New Caledonia. Neidhartia lochepintade n. sp. in Epinephelus chlorostigma differs from other Neidhartia spp. in various combinations of distinct body-size, rhynchus size, previtelline and pre-mouth distance, post-testicular distance, cirrus-sac reach and egg-size. Other species are: Neidhartia haywardi Bott, Miller & Cribb, 2013 in Plectropomus leopardus; Neidhartia tyleri Bott, Miller & Cribb, 2013 in Plectropomus leopardus and Plectropomus laevis; Prosorhynchus freitasi Nagaty, 1937 in Plectropomus leopardus and Plectropomus laevis; Prosorhynchus robertsthomsoni Bott & Cribb, 2009 in Cephalopholis argus; Prosorhynchus longisaccatus Durio & Manter, 1968 in Cephalopholis urodeta, Epinephelus areolatus, Epinephelus cyanopodus and Epinephelus maculatus. Prosorhynchus luzonicus Velasquez, 1959 and Prosorhynchus sp. B. in Epinephelus coioides; Prosorhynchus serrani Durio & Manter, 1968 in Variola albimarginata and Variola louti; Prosorhynchus sp. A in Epinephelus morrhua; Prosorhynchus sp. immature in Epinephelus coeruleopunctatus. The new combination Neidhartia longivesicula (Bilqees, Khalil, Khan, Perveen & Muti-ur-Rehman, 2009) (Syn. Prosorhynchus longivesicula) is formed. Evidence from this paper and earlier molecular studies indicates that there are numerous morphologically similar prosorhynchine species in serranids, most of which show a high degree of host-specificity.

Keywords: Bucephalidae, Neidhartia, Prosorhynchus, Epinephelus, Cephalopholis, Variola, New Caledonia

Introduction

Bucephalid digeneans are frequently found in fishes of the family Serranidae, in particular in members of the subfamily Epinephelinae [8]. For example, Bray & Justine [5] listed 16 species of Prosorhynchus Odhner, 1905 from serranid fishes: P. atlanticus Manter, 1940, P. bulbosus Kohn, 1961, P. caudovatus Manter, 1940, P. chorinemi Yamaguti, 1952, P. epinepheli Yamaguti, 1939, P. freitasi Nagaty, 1937, P. gonoderus Manter, 1940, P. jupe (Kohn, 1967), P. longisaccatus Durio & Manter, 1968, P. mcintoshi (Velasquez, 1959) (this may belong to Neidhartia), P. ozakii Manter, 1934, P. pacificus Manter, 1940, P. platycephali (Yamaguti, 1934), P. promicropsi Manter, 1940, P. serrani Durio & Manter, 1968, and P. thapari Manter, 1953, and added a further species P. maternus Bray & Justine, 2006. Two were missed, namely P. aguayoi Vigueras, 1955 and P. rarus (Kohn, 1970). Later, Bott & Cribb [2] added a further five species, P. jexi Bott & Cribb, 2009, P. lafii Bott & Cribb, 2009, P. robertsthomsoni Bott & Cribb, 2009, P. conorjonesi Bott & Cribb, 2009 and P. milleri Bott & Cribb, 2009 and recently Bott et al. [3] added yet another five species, all from Plectropomus spp., P. lesteri Bott, Miller & Cribb, 2013, P. wrightae Bott, Miller & Cribb, 2013, P. heronensis Bott, Miller & Cribb, 2013, P. munozae Bott, Miller & Cribb, 2013 and P. plectropomi Bott, Miller & Cribb, 2013, making a total of 29 species. Other genera of bucephalids are also reported in serranids, e.g., Neidhartia Nagaty, 1937 (N. neidharti Nagaty, 1937, N. ghardagae Nagaty, 1937, N. coronata Durio & Manter, 1968, N. epinepheli Bott & Cribb, 2009, N. tyleri Bott, Miller & Cribb, 2013, N. haywardi Bott, Miller & Cribb, 2013, N. plectropomi Bott, Miller & Cribb, 2013), Pseudoprosorhynchus Yamaguti, 1938 (P. hainanensis Shen, 1990), Rhipidocotyle Diesing, 1858 (R. angusticolle Chandler, 1941, R. clavivesiculum Ku & Shen, 1975), Bucephalus Baer, 1827 (B. heterotentaculatus Bravo-Hollis & Lamothe-Argumedo, 1956), Myorhynchus Durio & Manter, 1968 (M. pritchardae Durio & Manter, 1968), Muraenicola Nolan & Cribb, 2010 (syn: Folliculovarium Gu & Shen, 1983 pre-occupied) (M. xishaensis (Gu & Shen, 1983)), Neoprosorhynchus Dayal, 1948 (N. purius Dayal, 1948) and Telorhynchus Crowcroft, 1947 (T. arripidis Crowcroft, 1947).

Most of these species belong to the subfamily Prosorhynchinae Nicoll, 1914, but Bucephalus and Rhipidocotyle are in the Bucephalinae. These may be accidental records. The only bucephaline species originally described from a serranid is R. clavivesiculus which, according to the original description [22], has a recurved pars prostatica and sperm duct, a characteristic of the Prosorhynchinae [33].

This paper expands on the records made in Justine et al. [19], discussing the systematics of the reports in that paper, and adding new data obtained subsequently.

Materials and methods

Digeneans were collected live, immediately fixed in nearly boiling saline and then transferred to 80% ethanol. Whole mounts were stained with Mayer’s paracarmine, cleared in beechwood creosote and mounted in Canada balsam. Measurements were made through a drawing tube on an Olympus BH-2 microscope, using a Digicad Plus digitising tablet and Carl Zeiss KS100 software adapted by Imaging Associates, and are quoted in micrometres. The following abbreviations are used: BMNH, British Museum (Natural History) Collection at the Natural History Museum, London, UK; MNHN JNC, Muséum National d’Histoire Naturelle, Paris, France.

Use has been made of the visual key to Prosorhynchus developed by Bray & Palm [6]. (http://www.nhm.ac.uk/bray2009) and a similar key to the genus Neidhartia recently devised by us. We use the term “cirrus-sac reach” for the distance from the anterior-most extremity of the cirrus-sac to the posterior extremity of the body as a percentage of the body-length.

Results

Family Bucephalidae Poche, 1907

Subfamily Prosorhynchinae Nicoll, 1914

Genus Neidhartia Nagaty, 1937

urn:lsid:zoobank.org:act:380959E0-57F5-44FB-87FE-EB7B4958CCB6

Neidhartia lochepintade n. sp. (Figures 1, 2)

Figure 1–6.

Figure 1–6.

1: Neidhartia lochepintade n. sp. Holotype, uterus in outline. 2: Neidhartia lochepintade n. sp. Paratype, uterus in outline. 3: Neidhartia haywardi Bott, Miller & Cribb, 2013, uterus in outline. 4: Neidhartia tyleri Bott, Miller & Cribb, 2013 ex Plectropomus leopardus, uterus in outline. 5: Neidhartia tyleri Bott, Miller & Cribb, 2013, ex Plectropomus laevis, uterus in outline. 6: Prosorhynchus robertsthomsoni Bott & Cribb, 2009. Ventral view, uterus in outline. Scale bars: 500 μm (Figs. 1, 2, 4–6); 200 μm (Fig. 3).

Syn. Prosorhynchus sp. in Epinephelus chlorostigma of Justine et al. (2010).

urn:lsid:zoobank.org:act:A3A03B8A-A686-4168-AFE5-5F6A54C923BA

Type-Host: Epinephelus chlorostigma (Valenciennes) brown-spotted grouper, Serranidae.

Site: Pyloric caeca.

Type-Locality: Off Récif Toombo, deep-sea (22°34′431S, 166°27′552E, 04/01/2008);

Other locality: Off Récif Toombo, deep-sea, 200–300m (22°34′187S, 166°26′292E, 01/12/2009).

Prevalence: 67% (2 of 3).

Type-specimens: Holotype MNHN JNC 2446d-1, Paratypes, MNHN JNC 2446d-2-5, JNC 3141, BMNH 2013.11.18.1.

Etymology: Loche Pintade is the New Caledonian name for the host species.

Description

Based on 10 whole-mount preparations. Measurements and ratios in Table 1. Body fusiform, widest at about mid-body (Figures 1, 2). Tegument spinous; spines squamous, tiny, reach to posterior extremity. Rhynchus broad, relatively short and blunt. Mouth at about level of ovary, distinctly in post-equatorial half of body. Pharynx small, globular. Caecum oval, directed anteriorly.

Table 1.

Measurements and ratios of Neidhartia spp. % refers to % of body-length.

Species Neidhartia lochepintade n. sp.
Neidhartia haywardi
Neidhartia tyleri
Neidhartia tyleri
Host Epinephelus chlorostigma
Plectropomus leopardus
Plectropomus leopardus
Plectropomus laevis
n 10
5
7
6
min. max. mean min. max. mean min. max. mean min. max. mean
Length 938 1,252 1,159 658 744 715 1,031 1,663 1,392 1,204 1,512 1,328
Width 299 460 391 133 209 176 282 355 319 240 396 333
Previtelline distance 193 279 232 185 252 224 442 671 527 310 602 452
Precaecal distance 311 478 428 336 336 336 525 791 646 634 914 756
Pre-uterine distance 259 361 312 168 222 186 217 487 384 262 518 383
Pre-mouth distance 497 734 655 470 472 471 730 1,273 995 903 1,263 1,028
Pretesticular distance 422 588 541 295 385 348 547 1,082 836 565 875 726
Pre-ovarian distance 451 634 596 311 396 368 614 1,070 862 649 1,115 859
Rhynchus length 114 163 145 145 178 165 207 255 225 189 234 218
Rhynchus width 96 132 109 114 133 125 143 216 174 145 198 166
Rhynchus to vitellarium distance 35 235 102 32 93 64 226 426 303 74 387 229
Rhynchus to uterus distance 127 357 183 1 35 21 8 276 163 32 312 161
Rhynchus to caecum distance 196 443 308 152 152 152 317 530 427 408 684 538
Long vitelline field 312 465 375 104 236 149 160 465 344 192 485 297
Short vitelline field 256 511 339 98 142 114 104 355 230 130 336 246
Caecum length 133 203 165 109 109 109 117 279 186 170 260 217
Caecum width 94 131 112 55 55 55 86 133 100 69 86 80
Pharynx length 52 74 65 48 59 54 42 82 72 66 82 73
Pharynx width 59 74 65 58 64 61 53 94 76 67 84 77
Ovary length 98 122 111 62 85 71 73 173 118 105 136 120
Ovary width 77 110 97 50 68 60 79 138 110 99 123 112
Distance between ovary and anterior testis 0 25 3 0 58 12 0 27 4 0 71 26
Anterior testis length 84 128 107 55 91 75 115 179 150 147 217 175
Anterior testis width 75 116 92 54 73 63 116 168 142 130 194 155
Distance between testes 31 109 76 0 72 24 0 29 11 36 80 56
Posterior testis length 89 127 108 72 87 81 114 195 154 159 217 180
Posterior testis width 75 114 89 43 82 63 103 158 130 123 171 142
Posterior testis to cirrus-sac 0 0 0 0 0 0 0 0 0 0 0 0
Cirrus-sac length 363 595 480 179 217 202 217 360 311 239 353 308
Cirrus-sac width 117 169 141 66 94 79 91 148 128 99 116 109
Seminal vesicle length 146 164 158 63 119 78 79 179 118 73 148 112
Seminal vesicle width 70 117 88 37 54 45 40 115 65 41 88 64
Pars prostatica length 459 573 515 240 333 284 295 416 361 0 503 299
Pars prostatica width 64 95 81 51 69 61 59 109 79 61 85 74
Post-testicular distance 322 479 396 193 231 207 217 336 256 124 214 158
Post-vitelline distance 428 685 525 291 369 332 286 656 498 468 644 565
Cirrus-sac reach 490 637 564 278 346 312 322 510 444 355 491 432
Post-ovarian distance 402 463 431 249 303 282 317 502 407 269 473 335
Post-genital pore distance 37 63 50 30 48 42 30 81 47 29 57 41
Egg length 26 32 30 22 25 23 23 31 28 34 39 37
Egg width 13 22 17 11 15 13 15 20 18 16 19 17
Width % 30.1 38.1 33.7 20.2 28.5 24.5 19.3 32.4 23.6 19.2 28.9 25.1
Previtelline distance % 16.0 22.6 20.1 28.1 34.1 31.2 29.5 51.2 38.5 25.7 43.6 33.8
Precaecal distance % 33.1 38.8 36.9 45.4 45.4 45.4 48.4 50.9 49.9 52.7 60.4 55.3
Pre-uterine distance % 23.0 29.4 26.9 22.6 30.0 26.0 21.0 35.9 27.3 21.8 37.5 28.7
Pre-mouth distance % 52.9 60.0 56.7 63.2 63.8 63.5 66.2 76.5 72.6 73.9 83.6 77.3
Pretesticular distance % 44.9 51.3 47.7 44.9 52.1 48.5 53.0 65.0 59.5 46.9 60.8 54.4
Pre-ovarian distance % 48.0 54.2 51.8 47.3 54.3 51.4 58.9 64.4 61.8 51.4 73.8 64.3
Rhynchus length % 11.4 13.4 12.5 19.9 24.1 23.0 14.6 20.9 16.5 13.7 19.4 16.5
Rhynchus width % rhynchus length 63.2 101 75.8 66.9 81.2 76.0 63.0 105 77.8 66.3 105 76.9
Longest vitelline field % 28.1 37.1 32.4 15.8 31.7 20.8 15.6 31.7 24.2 15.3 32.1 22.1
Caecal length % 11.9 16.3 14.2 14.8 14.8 14.8 10.6 19.0 13.9 14.1 17.9 15.9
Ovary length % 8.76 10.5 9.7 8.62 12.1 9.97 6.55 11.1 8.50 8.01 10.8 9.07
Anterior testis length % 8.25 11.1 9.4 8.37 12.4 10.5 8.84 12.5 10.8 10.9 18.0 13.3
Distance between testes % 3.36 9.43 6.62 0 9.70 3.27 0 1.96 0.79 2.58 6.33 4.33
Posterior testis length % 7.38 11.7 9.7 10.9 12.0 11.4 9.37 13.3 11.1 11.7 16.0 13.6
Posterior testis to cirrus-sac % 0 0 0 0 0 0 0 0 0 0 0 0
Cirrus-sac length % 30.4 52.9 41.8 24.2 31.6 28.4 20.6 26.8 22.4 19.1 27.4 23.3
Seminal vesicle length % of cirrus-sac length 27.2 35.1 29.9 30.7 57.0 39.1 29.6 49.7 36.0 28.5 44.4 35.8
Post-testicular distance % 30.2 39.7 34.7 26.1 35.1 29.0 14.9 24.0 18.6 9.2 16.9 12.1
Post-vitelline distance % 39.7 56.8 45.3 39.1 56.1 46.7 27.7 42.1 35.5 33.9 51.0 43.0
Cirrus-sac reach % 41.1 59.2 49.0 37.6 52.7 43.8 30.1 34.5 32.0 28.3 38.9 32.7
Post-ovarian distance % 35.3 43.0 37.6 35.3 45.5 39.5 27.2 33.4 29.4 17.8 37.4 25.6
Post-genital pore distance % 3.04 6.70 4.41 4.10 6.86 5.96 1.97 5.45 3.47 1.92 4.52 3.13

Testes 2, irregularly oval, oblique, in about mid-body, usually well separated. Cirrus-sac elongate, more-or-less parallel sided, reaching anterior testis, anteriorly to pharynx. Seminal vesicle elongate-oval, in proximal cirrus-sac. Pars prostatica long, in two distinct parts; proximal part narrow, coiled over seminal vesicle; distal part wider, straighter, surrounded by dense layer of gland-cells, lining of filaments in chevron arrangement. Ejaculatory duct narrow, opening on large, complex genital lobe inside genital atrium. Genital atrium large. Genital pore distinctly separated from posterior extremity.

Ovary oval, intertesticular, overlapping posterior testis. Mehlis’ gland overlapping ovary and posterior testis. Details of proximal female system obscured by eggs. Uterus not reaching anteriorly to vitelline fields, fills most of available space to level of genital pore. Eggs numerous, tanned, operculate. Metraterm not detected, obscured by eggs. Vitellarium consists of two lateral fields of 12–15 follicles, more or less symmetrical, but with one field slightly longer than other, anterior extremity distinctly posterior to rhynchus and anterior to uterus, always anterior to caecum and gonads; posterior extremity at about level of ovary.

Excretory pore terminal; anterior extent of vesicle obscured by eggs.

Discussion

The features that distinguish N. lochepintade from previously described Neidhartia species are discussed below; comparative metrical data in Table 2.

Table 2.

Comparisons of Neidhartia spp., blue shading shows major distinctions, green shading shows minor distinctions.

Species Length μm Width % Rhynchus length % Previtelline distance % Pre-uterine distance % Pre-mouth distance % Post-testicular distance % Cirrus-sac reach % Egg-size μm Source
Neidhartia lochepintade n. sp. 1,067–1,252 30–38 11–13 16–23 23–29 53–60 30–40 41–59 26–32 × 13–19 new data
Neidhartia haywardi 658–744 20–28 20–24 28–34 23–30 63–64 26–35 38–53 22–25 × 11–15 new data
Neidhartia haywardi 731–1,073 23–28 18–26 ? 31 66 18 31 20–23 × 11–13 [3]
Neidhartia plectropomi 700–1,245 11–26 17–24 ? 28 67 21 31 28–33 × 16–20 [3]
Neidhartia tyleri ex P. leopardus 1,031–1,663 19–32 15–21 29–51 21–36 66–77 15–24 30–35 23–31 × 15–20 new data
Neidhartia tyleri ex P. laevis 1,204–1,512 19–29 14–19 26–44 22–38 74–84 9–17 28–39 34–39 × 16–19 new data
Neidhartia tyleri 1,203–1,544 16–22 14–20 42 30 76 18 30 38–44 × 22–26 [3]
Neidhartia coronata 1,392–1,949 14–15 17 47 52 81 15 17 33–38 × 17–22 [9]
Neidhartia epinepheli 880–896 25 18–19 35 14 65 25 36 25–26 × 13 [3]
Neidhartia ghardagae 561–908 24–27 21–37 34–40 29–33 77 21–23 29–33 31 × 20 [27]
Neidhartia longivesicula 1,910–2,120 33–36 15–16 12 20 34 45 44 29–31 × 11–12 [1]
Neidhartia microrhyncha 1,390–2,930 14–17 8–10 27 ? 59 33 19 none [7]
Neidhartia mcintoshi 820–1,000 26–30 14–21 23 56 48 29 31 26–34 × 17–26 [45]
Neidhartia neidharti 842–2,112 11–29 20–27 24 21 74 21 36 19–29 × 15–19 [27]
Neidhartia polydactyli 1,415 16 16 41 28 78 30 38 30–32 × 21–22 [25]
Pseudoprosorhynchus hainansis 2,552 21 9 26 17 57 33 31 21–24 × 12–13 [39]

Neidhartia coronata Durio & Manter, 1968, based on “six somewhat macerated, extended specimens” from the intestine of a “Serranidae”, “probably Epinephelus”, from off New Caledonia [9], is narrower, with a larger rhynchus, longer previtelline distance, longer pre-uterine distance, longer pre-mouth distance, shorter post-testicular distance, shorter cirrus-sac reach and greater egg-size. The host identifications in Durio & Manter [9] are often rather vague, and this case is no exception. In this particular case, Durio & Manter’s “Epinephelus” could be any Serranidae, including any species of Cephalopholis, Plectropomus, Variola and even Epinephelus.

Neidhartia epinepheli Bott & Cribb, 2009, based on two specimens from the intestine of the highfin grouper Epinephelus maculatus (Bloch) (Serranidae) off Lizard Island on the Great Barrier Reef [2], has a relatively larger rhynchus and a longer previtelline distance. In N. epinepheli the uterus reaches anterior to the vitellarium. Other probably differences are the pre-mouth distance, post-testicular region and cirrus-sac reach.

Neidhartia ghardagae Nagaty, 1937, based on 16 specimens from a “Serranus sp.” from off Ghardaga in the Red Sea [29], has a relative larger rhynchus, longer previtelline distance and longer pre-mouth distance and probably a shorter post-testicular region and a shorter cirrus-sac reach.

Neidhartia haywardi Bott, Miller & Cribb, 2013, based on 10 specimens and ITS2 sequence from Plectropomus leopardus, P. laevis and the spotted coralgrouper P. maculatus (Bloch), from Heron and Lizard Islands on the Great Barrier Reef [3] has a bigger rhynchus, longer previtelline distance and shorter post-testicular distance.

Neidhartia longivesicula (Bilqees, Khalil, Khan, Perveen & Muti-ur-Rehman, 2009) n. comb. (Syn. Prosorhynchus longivesicula) is based on seven specimens from the yellow-tail scad Atule mate (Cuvier) (as Caranx affinus Rüppell) (Carangidae) off Karachi in the northern Arabian Sea [1]. The ovary is described as “posterior to anterior testis and ventro-lateral to posterior testis”, indicating that the species belongs to Neidhartia. This species differs from N. lochepintade particularly in the more anterior mouth and greater body-size.

Neidhartia mcintoshi Velasquez, 1959, based on two mature and four immature specimens from the muscle, stomach and intestine of the duskytail grouper Epinephelus bleekeri (Vaillant) (Serranidae) off Malabon, Rizal, Luzon Island, Philippines [48], has a longer pre-uterine extent, and probably a relatively larger rhynchus, shorter pre-mouth distance and shorter cirrus-sac reach. In connection with unusual sites of infection given, Velasquez [48] stated that the “present species occurs as metacercaria and adult in the same host, showing evidence that infection of one fish is brought about possibly through the eating of the smaller fish by the larger”.

Neidhartia microrhyncha Chauhan, 1943, based on five non-ovigerous specimens from the alimentary canal of the Indian spiny turbot Psettodes erumei (Bloch & Schneider) (Psettodidae) off Bombay (now Mumbai), India [7], is narrower and has a shorter cirrus-sac reach. It is reported to grow much bigger.

Neidhartia neidharti Nagaty, 1937, based on eight specimens from Serranus sp. locally called “Nagil”, from off Ghardaga in the Red Sea [29], has a relatively larger rhynchus and longer pre-mouth distance and probably a shorter post-testicular region and a shorter cirrus-sac reach. The vitellarium overlaps the rhynchus. According to Froese & Pauly [15] the common name “Nagil” refers to either the squaretail coralgrouper Plectropomus areolatus (Rüppell, 1830) or the roving coralgrouper Plectropomus pessuliferus (Fowler, 1904) (Serranidae).

Neidhartia plectropomi Bott, Miller & Cribb, 2013 based on 10 specimens and ITS2 sequence from Plectropomus leopardus and P. laevis from Heron and Lizard Islands on the Great Barrier Reef [3] has a bigger rhynchus and longer previtelline distance.

Neidhartia polydactyli Manter, 1953, based on a single specimen from the intestine of the striped threadfin Polydactylus plebeius (Broussonet) (Polynemidae) off Suva, Fiji [26], has a relatively larger rhynchus and longer previtelline and pre-mouth distances.

Neidhartia tyleri Bott, Miller & Cribb, 2013 based on 10 specimens and ITS2 sequence from the Plectropomus leopardus, P. laevis and P. maculatus, from Heron and Lizard Islands on the Great Barrier Reef [3] is narrower, with longer previtelline and pre-mouth distances, shorter post-testicular distance and cirrus-sac reach, and larger eggs.

Pseudoprosorhynchus hainansis Shen, 1990, based on two specimens from the intestine of the Plectropomus leopardus off Hainan Island, southern China [41] is similar to Neidhartia lochepintade (and indeed the whole genus) in that the ovary is between the testes, but the rhynchus is disc-like, and the worm is long and narrow. It also appears to have a short cirrus-sac reach and smaller eggs.

These data, and the record from this deep-water serranid, indicate to us that the specimens described here belong to a new species. Prosorhynchus epinepheli Yamaguti, 1939 has been reported twice from this host, from off Tuticorin, India [18] and from the Arabian Gulf [40]. The illustrations in both papers show that the ovary lies partly anterior to and partly overlapping the anterior testis, and thus do not indicate that the worm in question is a Neidhartia. The Indian record [18] is from several host species and it is not stated from which the illustrated worm was collected. E. chlorostigma has also been listed as a host for unnamed Prosorhynchus spp. in the Arabian Gulf [11, 39].

As discussed below, the generic status of Prosorhynchus epinepheli and P. longisaccatus is ambiguous as often the ovary does not lie distinctly anteriorly to the testes, suggesting that they may be Neidhartia spp. Comparison of data in Tables 2 and 6 indicates that the rhynchus is relatively much larger in P. epinepheli and P. longisaccatus. The pre-uterine distance tends to be larger in P. longisaccatus, but overlaps considerably.

Table 6.

Comparisons of Prosorhynchus longisaccatus, green shading shows minor distinctions.

  Length Width % Rhynchus L % Previtellarium % Pre-Uterine % Pre-mouth % Post-testicular % Cirrus-sac reach % Eggs Reference
P. longisaccatus ex C. urodeta 863 40 27 23 35 55 45 51 30 × 20 new data
P. longisaccatus ex E. areolatus 639-1,203 21–41 18–25 14–25 19–38 40–56 38–55 40–62 26–36 × 17–21 new data
P. longisaccatus ex E. cyanopodus 920–1,403 25–43 18–27 15–24 22–40 44–55 37–53 45–60 24–33 × 14–23 new data
P. longisaccatus ex E. maculatus 784–1,160 23–46 17–27 11–22 20–37 41–58 40–54 44–64 24–40 × 17–25 new data
P. longisaccatus Durio & Manter, 1968 1,096–1,201 29–30 24 21 33 52 43 48 30–33 × 17–32 [9]
P. longisaccatus Durio & Manter, 1968 1,888–2,088 29–40 14–17 14 39 53 25 27 30–32 × 16–23 [42]
P. atlanticus Manter, 1940 705–1,677 18–28 17–24 22–27 41–52 45–47 39–45 36–39 27–34 × 14–22 [24]
P. atlanticus Manter, 1940 996–1,047 27–33 24–26 23–25 36–48 45–48 38–44 36–42 31–36 × 18–20 [5]
P. epinepheli Yamaguti, 1939 1,250–2,350 40–43 14–19 14 22 54 41 41 28–30 × 18–21 [51]
P. lafii Bott & Cribb, 2009 1,040–1,184 15–22 18 26 34 44 49 47 29–30 × 15–16 [2]

Neidhartia haywardi Bott, Miller & Cribb, 2013 (Figure 3)

urn:lsid:zoobank.org:act:47F33650-B6E4-414C-9F58-320F4F05E504

Host: Plectropomus leopardus (Lacepède) (Perciformes: Serranidae), leopard coralgrouper.

Site: digestive tract

Localities: Grande Rade, Nouméa 22°15′S 166°24E, 23/10/2007 and 24/10/2007; Between Larégnière and Récif Crouy, 22°20′702S, 166°19′295E, 05/05/2008.

Prevalence: 57% (4 of 7).

Vouchers: MNHN JNC2333B, JNC2333C, JNC2334, JNC2513; BMNH 2013.11.18.5-6.

Description

Based on five whole-mount preparations. Measurements and ratios in Table 1. Body widest at about mid-body (Figure 3). Tegument spinous; spines squamous, tiny, reach to posterior extremity. Rhynchus broad, conical or bluntly conical. Mouth just posterior to ovary, well into post-equatorial half of body. Pharynx small, globular. Caecum oval, directed anteriorly.

Testes 2, irregularly oval, oblique, in about mid-body, usually well separated. Cirrus-sac elongate, more-or-less parallel sided, reaching to or almost to anterior testis, anteriorly to pharynx. Seminal vesicle elongate-oval, in proximal cirrus-sac. Pars prostatica long, in two distinct parts; proximal part narrow, coiled over seminal vesicle; distal part, wider, straighter, surrounded by dense layer of gland-cells, lining of filaments in chevron arrangement. Ejaculatory duct narrow, opening on large, complex genital lobe, inside genital atrium. Genital atrium large. Genital pore distinctly separated from posterior extremity.

Ovary oval, intertesticular, overlapping testes. Mehlis’ gland overlapping ovary and posterior testis. Details of proximal female system obscured by eggs. Uterus reaches anteriorly to vitelline fields, occasionally to level of vitellarium, fills much of available space to level of genital pore. Eggs numerous, tanned, operculate. Metraterm not detected, obscured by eggs. Vitellarium consists of two lateral fields of 12–15 follicles, more or less symmetrical, but with one field slightly longer than other, anterior extremity posterior to rhynchus and anterior extent uterus, reaches anterior to caecum and gonads; posterior extremity at about level of ovary.

Excretory pore terminal; anterior extent of vesicle obscured by eggs.

Discussion

This form appears to be N. haywardi or N. plectropomi differing only in the previtelline distance, as calculated from the illustration [3, Figure 3], but it should be noted that in both species Bott et al. [3] found that the extent of the vitellarium was obscured by the uterus. N. haywardi and N. plectropomi are sister species according to the molecular study of Bott et al. [3]. We consider our specimens to be P. haywardi as the egg-sizes more nearly coincide (Table 2), but the cirrus-sac reach of our specimens tends to be greater than is apparent in either species. Both P. haywardi and P. plectropomi are reported from P. leopardus and P. laevis, and from Heron and Lizard Islands on the Great Barrier Reef.

The features distinguishing this species from its congeners can be seen in Table 2, and two further species are not easily distinguished, namely N. neidharti Nagaty, 1937 and N. epinepheli Bott & Cribb, 2009.

N. neidharti was first reported in Serranus sp. locally known as “Nagil” from the Red Sea [29]. According to Froese & Pauly [15] this common name refers to the squaretail coralgrouper Plectropomus areolatus (Rüppell) or the roving coralgrouper P. pessuliferus (Fowler). It seems clear, therefore, that it is a parasite of Plectropomus. Chauhan [7] recorded, but did not describe, this species in Belone sp. (Beloniformes: Belonidae) from Mumbai (Bombay), India. As unlikely as this combination of hosts is, its putative hosts associations become even more puzzling when the record by Maurya et al. [27] in the freshwater long-whiskered catfish Sperata (= Mystus) aor (Hamilton) (Siluriformes: Bagridae) from Uttar Pradesh, India is considered. We are discounting the Indian records of this species. N. neidharti apparently grows to a much greater size than N. plectropomi, although there is room for confusion. In Nagaty’s [29] description (p. 119) the length range is given as 561–908, whereas in the table of measurements (p. 166) the length is given as 842–2,112 (vs. 658–744 (715) for P. haywardi). This confusion also applies to width where, using the data from the description, the range is 24–27% and in the table it is 11–29% of body-length (vs. 20–24%). The body-width in Nagaty’s Figure 56 is about 24% of the body-length. The pre-mouth distance may be greater than in N. haywardi.

Neidhartia epinepheli. Bott & Cribb stated that it “It bears a superficial resemblance to the type-species, N. neidharti Nagaty, 1937, in that its uterus extends past the posterior margin of the rhynchus. N. epinepheli differs by having a caecum that does not extend into the anterior third of the body and the eggs are smaller, 25–26 × 12–13, compared with 30 × 15 for N. neidharti (see Nagaty, 1937)”. The confusion in the egg-size as given by Nagaty [29] for N. neidharti, in that he gives the egg-size as 30 × 15 in the text, but 19–29 × 15–19 in the table may well invalidate one of Bott & Cribb’s [2] distinctions. The other distinction is rather minor and it may be found that these species are synonymous. The pre-uterine distance is shorter than in N. haywardi in that the uterus overlaps the rhynchus.

Neidhartia tyleri Bott, Miller & Cribb, 2013 (Figures 4, 5)

urn:lsid:zoobank.org:act:E131C73F-7D32-4B80-8656-EB8411FAAE8B

Hosts: Plectropomus leopardus (Lacepède) (Perciformes: Serranidae), leopard coralgrouper; Plectropomus laevis (Lacepède), blacksaddled coralgrouper.

Site: digestive tract

Localities: (P. leopardus & P. laevis) Off Ouano (21°49′430S, 166°44′278E, 25/10/2007), P. leopardus Near Récif Toombo (22°34′107S, 166°28′816E, 30/09/2009).

Prevalences: P. leopardus, 29% (2 of 7), P. laevis, 50% (1 of 2).

Vouchers: (P. leopardus) MNHN JNC2340, JNC 3060B; BMNH 2013.11.18.2-3; (P. laevis) JNC2339; BMNH 2013.11.18.4.

Description

Based on seven whole-mount preparations from P. leopardus and six from P. laevis. Measurements and ratios in Table 1. Body fusiform, widest in posterior third (Figures 4, 5). Tegument spinous; spines squamous, tiny, reach to posterior extremity. Rhynchus broad, with narrow conical posterior extension. Mouth at about level of ovary or just posterior, well into post-equatorial half of body. Pharynx small, globular. Caecum elongate-oval, directed anteriorly.

Testes 2, irregularly oval, oblique to tandem, in about mid-body, slightly separated or not. Cirrus-sac elongate, more-or-less parallel sided, reaching anterior testis, anteriorly to pharynx. Seminal vesicle elongate-oval, in proximal cirrus-sac. Pars prostatica long, in two distinct parts; proximal part narrow, coiled over seminal vesicle; distal part, wider, straighter, surrounded by dense layer of gland-cells, lining of filaments in chevron arrangement. Ejaculatory duct narrow, opening on large, complex genital lobe inside genital atrium. Genital atrium large. Genital pore distinctly separated from posterior extremity.

Ovary oval, intertesticular, overlapping testes. Mehlis’ gland overlapping ovary and posterior testis. Details of proximal female system obscured by eggs. Uterus not reaching anteriorly to vitelline fields, fills much of available space to level of genital pore. Eggs numerous, tanned, operculate. Metraterm not detected, obscured by eggs. Vitellarium consists of two lateral fields of follicles, more or less symmetrical, but with one field slightly longer than other, anterior extremity distinctly posterior to rhynchus and anterior to uterus, always reaches anterior to caecum and gonads; posterior extremity at or just posterior to level of ovary.

Excretory pore terminal; anterior extent of vesicle obscured by eggs.

Discussion

We have identified the larger Neidhartia specimens as belonging to N. tyleri. Most morphological characters are similar (Table 2), but the eggs in our specimens from P. leopardus (the type-host of N. tyleri) are distinctly smaller than those described for this species [3] and our specimens from P. laevis. This species is readily distinguished from most described species (Table 2). N. neidharti is not distinguishable from the specimens from P. laevis in major features of the visual key and differs from the P. leopardus specimens only in rhynchus length (Table 2). This feature probably distinguishes this form from N. neidharti as the P. laevis specimens do not overlap in this feature. Comparison with N. neidharti as described by Nagaty [29] is problematical as the measurements given in the description and table do not coincide, but our specimens are very distinct from the illustrated specimen [28, Figure 56] in shape (relatively more elongate, although the measurements in the table do not bear this out), the previtelline distance and pre-uterine distance.

N. coronata Durio & Manter, 1968, described from “Serranidae, probably Epinephelus sp.” from off New Caledonia [9], differs from our specimens in the visual key in the pre-uterine distance and cirrus-sac reach. It should be borne in mind, however, that Durio & Manter [9] stated that their description was “based on six somewhat macerated, extended specimens”. The previtelline distance may also be a distinguishing feature.

Genus Prosorhynchus Odhner, 1905

urn:lsid:zoobank.org:act:21111289-7672-4028-830D-A37199B68E26

Prosorhynchus robertsthomsoni Bott & Cribb, 2009 (Figure 6)

urn:lsid:zoobank.org:act:0EEE6ED7-01CE-45A0-A2B9-27F32EBC64CC

Host: Cephalopholis argus Bloch & Schneider (Perciformes: Serranidae), peacock hind.

Site: digestive tract

Locality: Near Récif Toombo (22°31′30″S, 166°26′40″E, 03/11/2006).

Prevalence: 50% (1 of 2).

Vouchers: MNHN JNC 2110; BMNH 2013.11.18.25.

Discussion

Measurements and ratios are given in Table 3. This species is known only from Cephalopholis argus, the coral hind Cephalopholis miniata (Forsskål) and the bluespotted hind C. cyanostigma (Valenciennes) from off Heron and Lizard Islands on the Great Barrier Reef [2, 3]. Using the visual key our specimens align with four species, in addition to P. robertsthomsoni. Distinctions are tabulated in Table 4.

Table 3.

Measurements and ratios of Prosorhynchus spp. from Cephalopholis spp. % refers to % of body-length.

Species Prosorhynchus robertsthomsoni
Prosorhynchus longisaccatus
Host Cephalopholis argus
Cephalopholis urodeta
n 7
1
min. max. mean
Length 1,088 1,256 1,171 836
Width 251 291 270 333
Previtelline distance 192 281 238 192
Precaecal distance 345 474 399 261
Pre-uterine distance 117 298 245 289
Pre-mouth distance 504 577 540 458
Pretesticular distance 390 654 549 326
Pre-ovarian distance 467 676 559 341
Rhynchus length 112 144 130 223
Rhynchus width 97 145 122 166
Rhynchus to vitellarium distance 82 144 108 0
Rhynchus to uterus distance 79 170 131 58
Rhynchus to caecum distance 231 475 309 36
Long vitelline field 247 319 284 288
Short vitelline field 181 264 236 228
Caecum length 84 120 103 138
Caecum width 68 114 96 125
Pharynx length 42 53 48 67
Pharynx width 44 55 51 75
Ovary length 83 98 90 81
Ovary width 75 99 87 62
Distance between ovary and anterior testis 0 0 0 0
Anterior testis length 86 100 93 90
Anterior testis width 81 109 96 81
Distance between testes 0 89 34 30
Posterior testis length 75 107 91 82
Posterior testis width 61 109 88 96
Posterior testis to cirrus-sac 0 0 0 0
Cirrus-sac length 308 417 368 340
Cirrus-sac width 96 141 119 161
Seminal vesicle length 134 185 152 ?
Seminal vesicle width 37 59 47 ?
Pars prostatica length 346 523 435 ?
Pars prostatica width 59 128 95 ?
Post-testicular distance 350 460 405 375
Post-vitelline distance 588 713 653 406
Cirrus-sac reach 428 550 505 427
Post-ovarian distance 440 604 512 421
Post-genital pore distance 53 113 74 58
Egg length 32 38 34 30
Egg width 16 20 18 20
Width % 22.5 24.3 23.1 39.8
Previtelline distance % 17.7 23.3 20.3 23.0
Precaecal distance % 31.6 38.0 34.1 31.3
Pre-uterine distance % 10.8 25.7 20.9 34.5
Pre-mouth distance % 44.8 47.5 46.0 54.8
Pretesticular distance % 35.9 52.5 46.7 39.0
Pre-ovarian distance % 42.9 56.0 47.7 40.8
Rhynchus length % 9.95 12.4 11.1 26.7
Rhynchus width % rhynchus length 82.8 106 94.2 74.4
Longest vitelline field % 19.8 26.3 24.3 34.4
Caecal length % 6.7 10.4 8.9 16.4
Ovary length % 7.12 8.51 7.72 9.66
Anterior testis length % 7.23 8.84 7.94 10.8
Distance between testes % 0 8.14 2.96 3.59
Posterior testis % 6.77 9.79 7.81 9.85
Posterior testis to cirrus-sac % 0 0 0 0
Cirrus-sac length % 27.7 33.7 31.4 40.6
Seminal vesicle length % cirrus-sac length 35.0 44.5 39.0 ?
Post-testicular distance % 30.9 39.6 34.7 44.9
Post-vitelline distance % 53.0 58.1 55.8 48.6
Cirrus-sac reach % 38.6 48.0 43.1 51.0
Post-ovarian distance % 36.4 48.8 43.7 50.3
Post-genital pore distance % 4.56 10.4 6.28 6.99
Table 4.

Comparisons of Prosorhynchus robertsthomsoni, green shading shows minor distinctions.

Species Length Width % Rhynchus L % Previtellarium % Pre-Uterine % Mouth Post-testicular % Cirrus-sac reach % Eggs Reference
P. robertsthomsoni Bott & Cribb, 2009 1,088–1,256 23–24 10–12 18–23 10–26 45–47 31–40 39–48 32–38 × 16–20 new data
P. robertsthomsoni Bott & Cribb, 2009 1,072–1,408 18–23 10–11 27 24 48 31 35 29–30 × 16 [2]
P. aguayoi Vigueras, 1955 1,700 29 9 21 18 46 44 36 40 × 26 [47]
P. jexi Bott & Cribb, 2009 1,104–1,424 19–25 15 20 32 43 41 37 32–33 × 16 [2]
P. serrani Durio & Manter, 1968 1,027–2,245 22 12–18 20 17 49 27 33 24–29 × 15–21 [9]
P. serrani Durio & Manter, 1968 816–1,826 30–32 15–16 30–34 31 53–62 24–31 31–36 25–29 × 17–21 [27]
P. tsengi Tsin, 1933 1,500–1,800 24–25 79 22 19 47 34 41 19–25 × 14–17 [44]

Prosorhynchus aguayoi Vigueras, 1955 from the greater soapfish Rypticus saponaceus (Bloch & Schneider) (Serranidae) from off Cuba, Curaçao and Jamaica [30, 31, 50] is a very similar species to P. robertsthomsoni but is probably wider and more fusiform, with a longer post-testicular region. The vitellarium reaches the testes in P. aguayoi and the cirrus-sac does not.

Prosorhynchus jexi (syn: P. epinepheli of Durio &Manter (1968)) from the longfin grouper Epinephelus quoyanus (Valenciennes) (Serranidae) from the Great Barrier Reef [2, 9] differs from P. robertsthomsoni in the more restricted uterus. Bott & Cribb [2] considered that the reach of the uterus anterior to the vitellarium is a distinctive feature of P. robertsthomsoni but our observations indicate that this does not always occur (Figure 6). The cirrus-sac does not reach the testes in P. jexi.

Prosorhynchus serrani Durio & Manter, 1968 (syn: Prosorhynchus crucibulus of Nagaty (1937)) from the yellow-edged lyretail Variola louti (Forsskål) (Serranidae) from the Red Sea and off New Caledonia [9, 29] is very similar to P. robertsthomsoni but apparently has a distinctly different shaped rhynchus, in that it has a distinct narrow elongate posterior extension in contrast to the blunt rounded posterior of the P. robertsthomsoni rhynchus. It may be that the vitellarium reaches slightly more posteriorly in P. serrani in that the follicles extend just posterior to the pharynx, rather than just to the pharynx (see below).

Prosorhynchus tsengi Tsin, 1933 is a parasite of the bartail flathead Platycephalus indicus (Linnaeus) (Platycephalidae) off China [42, 47]. Bray & Palm [6] pointed out that the “original illustration of P. tsengi by Tsin [47, Figure 8] shows a lobed rhynchus, apparently with an aperture, and a straight pars prostatica, indicating that the species may in fact belong to the genus Rhipidocotyle”. In addition the rhynchus and eggs appear slightly smaller than in P. robertsthomsoni.

Prosorhynchus longisaccatus Durio & Manter, 1968 (Figures 710)

Figure 7–12.

Figure 7–12.

7: Prosorhynchus longisaccatus Durio & Manter, 1968 ex Cephalopholis urodeta. Ventral view, uterus in outline. 8: Prosorhynchus longisaccatus Durio & Manter, 1968 ex Epinephelus areolatus. Ventral view, uterus in outline. 9: Prosorhynchus longisaccatus Durio & Manter, 1968 ex Epinephelus cyanopodus. Ventral view, uterus in outline. 10: Prosorhynchus longisaccatus Durio & Manter, 1968 ex Epinephelus maculatus. Ventral view, uterus in outline. 11: Prosorhynchus serrani Durio & Manter, 1968 ex Variola albimarginata. Ventral view, uterus in outline. 12: Prosorhynchus serrani Durio & Manter, 1968 ex Variola louti. Ventral view, uterus in outline. Scale bars: 500 μm.

urn:lsid:zoobank.org:act:FAB66691-C264-4A99-9585-FF7BEDC41316

Hosts: Cephalopholis urodeta (Forster), Serranidae, darkfin hind; Epinephelus areolatus (Forsskål), Serranidae, areolate grouper; Epinephelus cyanopodus (Richardson), Serranidae, speckled blue grouper; Epinephelus maculatus (Bloch), Serranidae, highfin grouper.

Site: Intestine, pyloric caeca, stomach, digestive tract.

Locality : C. urodeta, Off Récif Kué, New Caledonia (07/10/2008); E. areolatus, Off Pointe Bovis (22°14′S, 166°20′E, 21/10/2008); Nouméa Fish Market (15/06/2007); E. cyanopodus, Passe de Dumbéa (22°20′00″S, 166°15′00″E, 25/11/2005 and 05/10/2006), Passe de Boulari (22°30′00S, 166°24′00″E, 05/10/2006), Near Îlot Mato (22°33′E, 166°47′E, 05/08/2007), Baie Maa (22°12′762S, 166°19′924E, 13/11/2007), Baie des Citrons, Nouméa (22°18′S, 166°26′E, 31/03/2009); E. maculatus, Phare Amédée (22°27′S, 166°26′E, 20/06/2006), Off Ever Prosperity, external slope, depth 60 m; (22°27′S, 166°21′E, 22/08/2006), Off Ever Prosperity, external slope, depth 60–80 m (22°27′S, 166°21′E, 17/04/2007), Récif Kué, External slope (22°34′892S, 166°29′673E, 19/06/2007), Off Récif Kué (22°36′S, 166°31′E, 07/10/2008), Shallow, Interior Lagoon near Récif Toombo (22°32′583S, 166°28′978E, 05/11/2008), Shallow, Interior Lagoon near Récif Toombo (22°32′536S, 166°29′069E, 20/11/2008), Baie des Citrons, Nouméa (22°18′S, 166°26′E, 09/04/2009), Interior Lagoon near Récif Toombo (22°32′536S, 166°29′069E, 30/04/2009).

Prevalence: C. urodeta, 33% (1 of 3); E. areolatus, 75% (3 of 4); E. cyanopodus, 87% (7 of 8); E. maculatus, 61% (16 of 26).

Voucher specimens: C. urodeta, MNHN JNC 2683; E. areolatus, JNC2690, JNC2691, JNC2175; BMNH 2013.11.18.15-16; E. cyanopodus, JNC2270a, JNC1659, JNC1998B, JNC1998C, JNC2000A, JNC2000B, JNC2270, JNC2395, JNC2891A, JNC2891B; BMNH 2006.4.27.1-10, 2013.11.18.22-23; E. maculatus, JNC1874, JNC1927, JNC2157D, JNC2187A, JNC 2680, JNC 2754, JNC 2759, JNC2894B, JNC2929, JNC3031, JNC3052, JNC3053, JNC3061, JNC3066, JNC3067; BMNH 2007.5.2.39-41, 2013.11.18.17-21.

Description

See Tables 3 and 5 for measurements and ratios based on 52 specimens. Ovary in variable position relative to testes: pre-ovarian distance is greater than the pre-testicular distance in the specimen from C. urodeta, in 13 of 16 from E. areolatus, 8 of 13 from E. cyanopodus and 10 of 22 from E. maculatus.

Table 5.

Measurements and ratios of Prosorhynchus longisaccatus from Epinephelus spp. % refers to % of body-length.

Host Epinephelus areolatus
Epinephelus cyanopodus
Epinephelus maculatus
n 16
13
22
min max mean min max mean min max mean
Length 639 1,203 887 920 1,403 1,134 784 1,160 937
Width 185 382 276 298 471 359 191 386 297
Previtelline distance 142 239 176 167 293 212 105 197 167
Precaecal distance 194 347 255 263 420 342 225 348 266
Pre-uterine distance 177 348 260 267 441 322 184 339 285
Pre-mouth distance 359 499 433 502 621 567 367 497 449
Pretesticular distance 250 464 339 334 548 441 272 402 339
Pre-ovarian distance 299 467 367 308 590 460 295 416 338
Rhynchus length 146 262 192 209 347 263 159 244 204
Rhynchus width 135 300 182 178 307 245 131 223 170
Rhynchus to vitellarium distance 0 26 4 0 0 0 0 1 0
Rhynchus to uterus distance 0 148 64 0 148 63 0 291 91
Rhynchus to caecum distance 0 148 62 35 129 81 2 341 81
Long vitelline field 147 337 218 242 355 282 131 292 215
Short vitelline field 99 280 192 146 309 236 108 283 194
Caecum length 101 164 131 94 177 142 88 154 121
Caecum width 65 134 100 77 157 104 66 133 94
Pharynx length 44 72 56 56 86 72 49 78 62
Pharynx width 49 78 58 58 81 75 46 88 65
Ovary length 54 112 77 66 122 99 54 102 76
Ovary width 34 124 69 65 111 92 41 109 68
Distance between ovary and anterior testis 0 66 6 0 0 0 0 16 1
Anterior testis length 59 147 92 85 149 118 58 117 86
Anterior testis width 51 133 82 78 121 97 42 117 75
Distance between testes 0 95 24 0 107 38 0 179 43
Posterior testis length 58 141 92 84 156 113 50 118 85
Posterior testis width 48 149 87 73 135 114 42 106 76
Posterior testis to cirrus-sac 0 23 1 0 0 0 0 59 5
Cirrus-sac length 206 439 284 294 483 377 240 461 331
Cirrus-sac width 84 178 108 112 188 138 82 165 127
Seminal vesicle length 83 150 117 111 211 161 72 155 115
Seminal vesicle width 27 54 40 40 92 66 21 74 42
Pars prostatica length 243 655 348 401 401 401 275 766 424
Pars prostatica width 43 83 63 61 81 69 28 91 57
Post-testicular distance 250 596 390 410 710 518 350 583 436
Post-vitelline distance 341 716 504 513 848 659 435 682 556
Cirrus-sac reach 347 668 455 496 747 587 435 653 518
Post-ovarian distance 269 690 442 484 744 574 408 705 521
Post-genital pore distance 16 115 67 59 118 86 36 98 75
Egg length 26 36 30 24 33 27 24 40 33
Egg width 17 21 18 14 23 18 17 25 21
Width % 20.9 41.5 31.6 25.0 43.1 32.0 23.0 45.8 31.6
Previtelline distance % 14.2 25.4 20.2 14.7 23.8 18.7 11.4 21.6 17.9
Precaecal distance % 23.6 34.1 29.0 26.2 34.1 30.1 23.9 37.8 28.5
Pre-uterine distance % 19.4 38.2 29.4 21.8 40.1 28.6 20.0 36.9 30.5
Pre-mouth distance % 39.9 56.1 49.6 44.0 54.7 49.4 41.4 58.2 47.7
Pretesticular distance % 27.3 47.3 38.9 30.5 46.3 39.0 29.6 44.4 36.4
Pre-ovarian distance % 32.6 50.7 42.3 33.5 48.0 40.5 31.7 46.5 36.2
Rhynchus length % 17.8 24.8 21.9 18.4 26.5 23.2 17.4 26.8 21.9
Rhynchus width % rhynchus length 70.3 114 94.3 71.8 119 94.5 60.4 103.1 83.6
Longest vitelline field % 16.7 28.3 24.6 19.6 32.2 25.1 16.1 29.1 22.9
Caecal length % 9.81 21.8 15.3 9.44 14.8 12.5 10.2 15.4 12.9
Ovary length % 6.12 11.6 8.79 6.02 11.1 8.73 6.46 11.5 8.11
Anterior testis length % 7.28 16.0 10.3 7.65 12.1 10.4 6.83 12.1 9.11
Distance between testes % 0 8.63 2.50 0 10.8 3.42 0 19.4 4.53
Posterior testis % 7.37 15.4 10.2 7.62 12.2 9.90 5.67 11.6 8.98
Posterior testis to cirrus-sac % 0 2.28 0.14 0 0 0 0 6.50 0.49
Cirrus-sac length % 25.4 36.9 32.2 26.5 43.0 33.2 26.2 43.6 35.4
Seminal vesicle length % of cirrus-sac length 38.8 56.2 44.8 37.8 43.7 40.7 20.5 46.5 35.4
Post-testicular distance % 37.7 55.1 43.7 36.9 53.1 45.8 40.1 54.3 47.3
Post-vitelline distance % 50.9 66.3 56.4 50.7 64.0 57.9 52.2 64.5 59.4
Cirrus-sac reach % 39.6 61.7 51.9 45.1 59.6 51.7 43.8 63.7 55.5
Post-ovarian distance % 40.8 58.6 48.9 45.7 56.7 50.6 46.7 61.2 55.4
Post-genital pore distance % 2.42 10.6 7.65 5.62 10.5 7.66 4.29 10.5 7.96

Discussion

Our study of this species is based on 52 measured specimens. In our visual key only four species showed no non-overlapping features with our specimens, namely P. atlanticus, P. longisaccatus, P. epinepheli and P. lafii (Table 6). We consider that our specimens conform to the species P. longisaccatus, a species originally reported from a “leche”, a serranid from off New Caledonia [9]. Later, we [5] considered our specimens from E. cyanopodus as this species and then [19] reported E. areolatus, and E. maculatus as hosts; all these reports are from New Caledonia. In the latter paper we reported the specimen from C. urodeta as Prosorhynchus sp.

Prosorhynchus atlanticus Manter, 1940 is an Atlantic species, originally described in the serranids, the black grouper Mycteroperca bonaci (Poey), the gag Mycteroperca microlepis (Goode & Bean) and the yellowfin grouper Mycteroperca venenosa (Linnaeus) off Florida [25]. The ovary is, apparently, always pre-testicular, the uterus almost never reaches anteriorly to ovary (only slightly in 1 of 29) and the cirrus-sac reach is generally smaller (Table 6).

Prosorhynchus epinepheli Yamaguti, 1939 was originally described from the Hong Kong grouper Epinephelus akaara (Temminck & Schlegel) (Serranidae) from the Inland Sea of Japan [52]. The name has been widely used subsequently for Prosorhynchus specimens from serranids [8], although some may be misidentified. P. longisaccatus is closely similar to P. epinepheli. We believe that either P. epinepheli or P. longisaccatus is the most appropriate identification, particularly as the variable position of the ovary, which is anterior to (and overlapping) the testes or between the testes in our specimens is similar to that described for both of these species. Yamaguti [52] described the position of the ovary in P. epinepheli as “overlapping right testis or entirely on its dorsal side (in the type it lies anterodorsal to the right testis, but may be dorsal, dorsolateral or posterodorsal to it)”. Durio & Manter [9] found that in P. longisaccatus the ovary is “to the right of, or partly posterior to, anterior testis”. This sheds some doubt on the generic classification of the worm, the variation of which includes a characteristic feature of the genus Neidhartia Nagaty, 1937, which according to Overstreet & Curran [33] is “Ovary at level between testes”. Durio & Manter [9] compared their new species to P. epinepheli, using Yamaguti’s [52] original description and new material reported from the honeycomb grouper Epinephelus merra Bloch, 1793 off Heron Island, southern Great Barrier Reef. It should be noted, however, that Bott & Cribb [2] examined one of Durio & Manter’s “P. epinepheli” specimens and considered that it belonged to their new species P. jexi, and that the host was most probably not E. merra, but the similar species, the longfin grouper Epinephelus quoyanus (Valenciennes), which is much commoner in the waters around Heron Island (see also [20]). Durio & Manter [9] summarised the differences between P. epinepheli and P. longisaccatus as “(1) the uterus does not extend even to midatrial level, whereas in all specimens of P. epinepheli it extends postatrially; (2) the rhynchus is wider, and the arrangement of muscles at its anterior edge gives a distinctive appearance”. The first distinction probably relies just on the amount of eggs produced and the second is rather vague and difficult to assess. It seems quite possible that these species are synonymous. There appear to be no morphological criteria for separating these species and we are recognising this species based on the locality of collection, and expect the status of this worm to be elucidated or at least clarified by molecular studies at present in progress.

Prosorhynchus lafii Bott & Cribb, 2009 from the brown-marbled grouper Epinephelus fuscoguttatus (Forsskål) from off Heron Island, Great Barrier Reef [2] differs from P. longisaccatus in the vitelline fields which are “tight lateral clusters at level of caecum”. It is probably a more slender worm than P. longisaccatus (Table 6). The ovary is anterior to, but overlapping, the anterior testis.

Suriano & Martorelli [45] reported P. longisaccatus in the Remo flounder Oncopterus darwinii Steindachner (Pleuronectidae) off Buenos Aires Province, Argentina. It is larger than previously described for this species, with a shorter post-testicular region and cirrus-sac reach, and probably a shorter rhynchus (Table 6). In agreement with Etchegoin et al. [12] we believe that these worms are not conspecific with the worms from serranids in the Pacific Ocean.

Prosorhynchus serrani Durio & Manter, 1968 (Figures 11, 12)

(syn. Prosorhynchus crucibulus (Rudolphi, 1819) from Serranus louti of Nagaty (1937))

urn:lsid:zoobank.org:act:1B73DB12-40AC-419C-9986-EE6EB612A6AF

Hosts: Variola albimarginata Baissac, Serranidae, white-edged lyretail; Variola louti (Forsskål), Serranidae, yellow-edged lyretail.

Site: digestive tract.

Locality: V. albimarginata, Off Ever Prosperity, external slope, depth 60m (22°27′S, 166°21′E, 07/11/2006); V. louti, Near Passe de Dumbéa (22°20′00″S, 166°15′00″E, 01/03/2006, 02/03/2006); Off Ever Prosperity, external slope, depth 60m (22°27′S, 166°21′E, 07/11/2006); Récif Kué, External slope (22°34′892S, 166°29′673E,21/06/2007); External Slope of Récif Toombo (22°33′866S, 166°26′597E, 09/10/2007); Récif Toombo (22°33′172S, 166°26′589E, 20/11/2007).

Prevalence: V. albimarginata, 1 of 1; V. louti, 6 of 10 (60%).

Vouchers: V. albimarginata, MNHN JNC2115; V. louti, JNC1756, JNC1757, JNC2117, JNC2198, JNC2301, JNC2401; BMNH 2007.11.14.44, 2013.11.18.13-14.

Description

It should be noted that the uterus reaches anteriorly beyond the ovary. Measurements and ratios are given in Table 7.

Table 7.

Measurements and ratios of Prosorhynchus serrani. % refers to % of body-length.

Host Variola albimarginata
Variola louti
n 1
10
min. max. mean
Length 1,322 1,163 2,321 1,775
Width 253 169 311 224
Previtelline distance 314 352 714 524
Precaecal distance 395 409 963 694
Pre-uterine distance 379 443 919 670
Pre-mouth distance 630 611 1,263 985
Pretesticular distance 628 615 1,396 1,046
Pre-ovarian distance 582 571 1,301 976
Rhynchus length 177 147 247 187
Rhynchus width 141 102 139 122
Rhynchus to vitellarium distance 136 158 505 337
Rhynchus to uterus distance 377 253 871 514
Rhynchus to caecum distance 218 214 875 579
Long vitelline field 350 193 637 448
Short vitelline field 300 201 547 374
Caecum length 177 0 327 200
Caecum width 101 60 121 84
Pharynx length 0 0 78 53
Pharynx width 0 0 76 54
Ovary length 107 77 134 108
Ovary width 81 63 128 94
Distance between ovary and anterior testis 0 0 0 0
Anterior testis length 126 84 178 126
Anterior testis width 108 76 162 116
Distance between testes 65 13 115 67
Posterior testis length 138 72 168 128
Posterior testis width 109 70 138 111
Posterior testis to cirrus-sac 0 0 0 0
Cirrus-sac length 338 222 359 294
Cirrus-sac width 80 77 135 103
Seminal vesicle length 0 0 130 43
Seminal vesicle width 0 0 69 17
Pars prostatica length 0 0 387 137
Pars prostatica width 0 0 87 51
Post-testicular distance 371 263 577 404
Post-vitelline distance 658 508 1,041 773
Cirrus-sac reach 444 376 579 491
Post-ovarian distance 635 493 908 676
Post-genital pore distance 112 0 203 91
Egg length 24 24 33 28
Egg width 13 15 22 18
Width % 19 9.9 17.5 13.0
Previtelline distance % 24 26.3 33.3 29.4
Precaecal distance % 30 31.8 43.4 38.7
Pre-uterine distance % 29 26.2 52.1 38.4
Pre-mouth distance % 48 52.1 59.3 55.5
Pretesticular distance % 48 49.4 65.2 58.5
Pre-ovarian distance % 44 45.4 60.7 54.6
Rhynchus length % 13 7.8 16.7 11.0
Rhynchus width % rhynchus length 80 55.1 79.2 66.2
Longest vitelline field % 27 16.6 29.7 24.9
Caecal length % 13 0 15.7 11.2
Ovary length % 8 4.74 9.02 6.23
Anterior testis length % 10 5.49 9.73 7.21
Distance between testes % 5 1.12 5.84 3.71
Posterior testis % 10 4.77 12.24 7.39
Posterior testis to cirrus-sac % 0 0 0 0
Cirrus-sac length % 26 13.7 22.1 17.1
Seminal vesicle length % of cirrus-sac length 0 0 40.0 14.8
Post-testicular distance % 28 17.6 31.7 23.0
Post-vitelline distance % 50 37.3 50.3 43.8
Cirrus-sac reach % 34 23.7 39.3 28.6
Post-ovarian distance % 48 33.2 47.7 38.5
Post-genital pore distance % 8 0 8.75 4.96

Discussion

Prosorhynchus serrani is known previously only from the yellow-edged lyretail Variola louti (Forsskål) (Serranidae) from the Red Sea and off New Caledonia [9, 29]. Our specimens appear indistinguishable from those described by these authors.

This species is very similar to several other species and their relationships will probably only be resolved by molecular means. However, there seem to be minor morphological features which may allow the continued recognition of the Variola parasites as distinct (Table 8). Of those with no distinction in the parameters used in the visual key two can immediately be distinguished by other features.

Table 8.

Comparisons of Prosorhynchus serrani, green shading shows minor distinctions.

  Length Width % Rhynchus L % Previtelline % Pre-Uterine % Pre-mouth % Post-testicular % Cirrus-sac reach % Eggs Reference
P. serrani ex V. albimarginata 1,322 19 13 24 29 48 28 34 24 × 13 new data
P.serrani ex V. louti 1,163–2,321 10–18 8–17 26–33 26–52 52–59 18–32 24–39 24–33 × 15–22 new data
P. serrani Durio & Manter, 1968 1,027–2,245 22 12–18 20 17 49 27 33 24–29 × 15–21 [9]
P. serrani Durio & Manter, 1968 816–1,826 30–32 15–16 30–34 31 53–62 24–31 31–36 25–29 × 17–21 [27]
P. attenuatus Siddiqi & Cable, 1960 693–1,107 17–20 9–13 28 27 55 30 33 19–21 × 13–15 [41]
P. caballeroi Gupta & Ahmad, 1976 2,980 14 6 42 36 57 18 25 19–21 × 11–13 [17]
P. caudovatus Manter, 1940 2,000–4,000 17–20 10–17 18–31 25–46 39–44 3846 29–35 3845 × 1922 [10]
P. caudovatus Manter, 1940 1,715–2,245 27–30 3243 × 2125 [14]
P. caudovatus Manter, 1940 3,672 12 11 21 37 38 50 36 [4]
P. conorjonesi Bott & Cribb 2009 1,9043,360 67 9–12 28 52 45 31 20 31–32 × 16 [2]
P. jexi Bott & Cribb, 2009 1,104–1,424 19–25 15 20 32 43 41 37 32–33 × 16 [2]
P. milleri Bott & Cribb, 2009 1,392–1,648 13–14 9 31 51 56 24 25 25 × 16 [2]
P. robertsthomsoni Bott & Cribb, 2009 1,072–1,408 18–23 10–11 27 24 48 31 35 29–30 × 16 [2]
P. thapari Manter, 1953 1,778–2,282 15–16 12 33 44 53 25 28 27–34 × 19–22 [25]
P. truncatus Verma, 1936 1,760–2,600 23–24 16–20 30 ? 63 21 20 35–40 × 18–20 [46]

P. attenuatus Siddiqi & Cable, 1960 from the Atlantic bumper Chloroscombrus chrysurus (Girard) (Carangidae) off Puerto Rico was described with a “spherical, suckerlike” rhynchus and it certainly looks like a sucker in the illustration. The pars prostatica is described as “tubular” and appears straight in the illustration [43], thus indicating that it may have been placed in the wrong subfamily.

P. caudovatus Manter, 1940 (syn. P. crucibulus of Eckmann (1932)) from serranids in the waters around Africa [4, 10, 13, 14, 46] has distinctive filamented eggs.

Other similar species are:

Prosorhynchus caballeroi Gupta & Ahmad, 1976 known from one specimen from the shrimp scad Alepes djedaba (Forsskål) (as Caranx kalla Cuvier) (Carangidae) in the Bay of Bengal [17] grows larger than P. serrani, with a smaller rhynchus and a longer previtelline distance.

Prosorhynchus conorjonesi Bott & Cribb 2009 from the barramundi cod Cromileptes altivelis (Valenciennes) (Serranidae) on the Great Barrier Reef [2] grows larger than P. serrani, is much narrower, with a more anterior mouth and a shorter cirrus-sac reach.

Prosorhynchus jexi has a more anterior mouth than P. serrani and a longer post-testicular region [2, 9].

Prosorhynchus milleri Bott & Cribb, 2009 based on two specimens from Variola louti from Lizard Island, Great Barrier Reef [2] is very similar to P. serrani and from one of the same host species. It is said to differ from P. serrani in that the latter has “a uterus that extends anterior to the vitelline follicles into the anterior quarter of the body”. Our results complicate things in that the anterior uterine extent varies considerably in our specimens from V. louti. Judging from the illustration of P. milleri in Bott & Cribb [2] the pre-uterine extent is about 51% of body-length and judging from Durio & Manter’s [9] illustration of P. serrani this ratio is about 17%. Durio & Manter [9] considered P. crucibulum from V. louti of Nagaty [29] a synonym of P. serrani and judging from Nagaty’s illustration the pre-uterine distance is about 31% of body-length. This ratio in our worms varies between 26 and 52%, and without a distinct bimodal pattern (26, 29, 30, 32, 33, 38, 39, 40, 45, 49 and 52%). It may well be that there are two forms here, but we do not as yet have enough data to be certain where to draw the line.

Prosorhynchus robertsthomsoni Bott & Cribb, 2009 is very similar to P. serrani but apparently has a distinctly different shaped rhynchus, in that it has a blunt rounded posterior extension in contrast to the distinct narrow elongate posterior extension of the P. serrani rhynchus [2]. It may be that the vitellarium reaches slightly more posterior in P. serrani in that the follicles extend just posterior to the pharynx, rather than just to the pharynx.

Prosorhynchus thapari Manter, 1953 was based on 17 specimens from the spotted coralgrouper Plectropomus maculatus (Bloch) (Serranidae) from off Fiji [26]. We can detect no morphological distinctions from P. serrani and retain the species as separate based on host distinction, and the knowledge that as yet unpublished studies indicate some specificity and cryptic speciation in the genus. Nevertheless, it may well be that this is the oldest valid name for this species.

Prosorhynchus truncatus Verma, 1936 is based on two specimens, one ovigerous and lost and the other without eggs, from the intestine of the river catfish Cephalocassis jatia (Hamilton) (as Arius j.) (Ariidae) off Puri, Bay of Bengal [49]. It has a more posteriorly situated mouth and a shorter cirrus-sac reach.

Prosorhynchus freitasi Nagaty, 1937 (Figures 13, 14)

Figure 13–18.

Figure 13–18.

13: Prosorhynchus freitasi Nagaty, 1937 from Plectropomus leopardus, uterus in outline. 14: Prosorhynchus freitasi Nagaty, 1937 from Plectropomus laevis, uterus in outline. 15: Prosorhynchus luzonicus Velasquez, 1959, uterus in outline. 16: Prosorhynchus luzonicus Velasquez, 1959, cirrus-sac. 17: Prosorhynchus sp. A ex Epinephelus morrhua. Ventral view, uterus in outline. 18: Prosorhynchus sp. B ex Epinephelus coioides. Ventral view, uterus in outline. Scale bars: 500 μm (Figs. 13–15, 17, 18); 200 μm (Fig. 16).

urn:lsid:zoobank.org:act:D5FF3B1F-10B1-4447-ACB7-C7D544C36AFE

Host: Plectropomus laevis (Lacepède), Serranidae, blacksaddled coralgrouper; Plectropomus leopardus (Lacepède), Serranidae, leopard coralgrouper.

Site: digestive tract.

Localities: P. laevis Off Ouano (21°49′430S, 166°44′278E, 25/10/2007); P. leopardus Grande Rade, Nouméa (22°15′S 166°24E, 23/10/2007), Off Ouano (21°49′430S, 166°44′278E, 25/10/2007), Between Larégnière and Récif Crouy (22°20′702S, 166°19′295E, 05/05/2008).

Prevalence: P. laevis 1 of 2 (50%); P. leopardus 5 of 7 (71%).

Vouchers: P. laevis JNC2339; P. leopardus MNHN JNC2333A, JNC 2334, JNC2340, JNC2513, JNC 2514; BMNH 2013.11.18.7-12.

Discussion

Table 9 measurements, Table 10 comparisons.

Table 9.

Measurements and ratios of Prosorhynchus freitasi and P. luzonicus. % refers to % of body-length.

Species Prosorhynchus freitasi
Prosorhynchus freitasi
Prosorhynchus luzonicus
Host Plectropomus leopardus
Plectropomus laevis
Epinephelus coioides
n 17
6
14
min. max. mean min. max. mean min. max. mean
Length 848 1,650 1,239 1,365 1,591 1,502 792 1,172 925
Width 134 363 207 214 290 255 129 288 202
Previtelline distance 322 778 560 633 860 717 142 221 171
Precaecal distance 358 923 640 736 878 795 219 311 257
Pre-uterine distance 343 918 629 693 928 807 263 409 336
Pre-mouth distance 573 1,134 888 947 1,131 1,020 327 471 381
Pretesticular distance 488 1,085 771 837 1,095 959 315 456 372
Pre-ovarian distance 452 1,052 729 801 1,039 912 276 407 338
Rhynchus length 37 61 51 55 63 60 126 170 142
Rhynchus width 42 67 53 48 63 54 99 170 130
Rhynchus to vitellarium distance 281 717 510 564 802 658 0 72 29
Rhynchus to uterus distance 296 874 587 646 917 754 133 272 194
Rhynchus to caecum distance 314 900 602 665 876 752 78 163 114
Long vitelline field 119 329 205 194 270 235 186 344 251
Short vitelline field 112 249 170 153 223 182 154 257 207
Caecum length 86 190 128 148 180 161 80 125 105
Caecum width 22 87 51 51 67 59 58 108 79
Pharynx length 36 71 51 47 57 52 42 66 53
Pharynx width 41 73 52 56 62 59 46 75 58
Ovary length 51 105 79 87 108 95 58 95 74
Ovary width 37 97 66 73 96 82 54 79 65
Distance between ovary and anterior testis 0 38 9 0 47 8 0 0 0
Anterior testis length 63 140 95 92 138 114 69 99 82
Anterior testis width 44 126 80 74 114 93 66 111 80
Distance between testes 0 53 13 0 18 3 0 39 10
Posterior testis length 57 141 97 89 136 114 69 92 80
Posterior testis width 47 113 73 80 104 91 71 92 80
Posterior testis to cirrus-sac 0 0 0 0 0 0 0 0 0
Cirrus-sac length 204 380 281 303 360 330 230 360 281
Cirrus-sac width 57 120 89 89 157 115 70 124 95
Seminal vesicle length 64 197 139 ? ? ? 101 165 138
Seminal vesicle width 17 61 48 ? ? ? 37 63 51
Pars prostatica length 360 509 444 ? ? ? 302 439 357
Pars prostatica width 55 101 73 ? ? ? 54 97 73
Post-testicular distance 163 394 284 283 454 344 308 534 383
Post-vitelline distance 331 629 473 493 605 536 411 636 506
Cirrus-sac reach 266 529 398 455 496 465 363 532 426
Post-ovarian distance 308 552 427 455 558 485 410 682 510
Post-genital pore distance 24 71 57 39 82 68 82 160 108
Egg length 24 32 27 24 28 26 27 35 30
Egg width 13 21 17 16 19 17 15 20 18
Width % 12.2 22.8 16.6 13.5 20.0 17.0 16.3 25.2 21.7
Previtelline distance % 35.3 50.0 44.8 43.9 54.2 47.6 15.6 20.8 18.5
Precaecal distance % 39.3 56.5 51.1 51.1 55.6 53.5 25.2 30.6 27.6
Pre-uterine distance % 37.7 60.0 50.1 50.2 58.8 53.6 31.0 46.6 36.7
Pre-mouth distance % 63.2 71.2 66.6 66.7 71.6 68.6 37.7 44.3 41.3
Pretesticular distance % 53.6 68.1 61.9 61.3 69.0 63.7 37.9 43.2 40.3
Pre-ovarian distance % 49.6 66.0 58.3 57.3 65.5 60.6 33.0 39.8 36.6
Rhynchus length % 3.2 5.0 4.2 3.6 4.4 4.0 12.9 17.6 15.5
Rhynchus width % rhynchus length 83.0 123.8 104.9 75.6 102.1 89.2 76.3 105.5 91.4
Longest vitelline field % 13.4 20.6 16.5 12.2 17.9 15.7 23.5 29.6 27.1
Caecal length % 8.0 13.9 10.4 9.7 11.3 10.9 9.4 14.0 11.3
Ovary length % 5.24 8.8 6.47 5.47 7.5 6.33 7.10 8.8 7.98
Anterior testis length % 5.04 10.1 7.7 5.82 9.6 7.6 6.55 10.7 8.9
Distance between testes % 0 3.33 0.98 0 1.11 0.19 0 3.73 0.97
Posterior testis length % 4.6 10.8 8.0 6.0 8.7 7.6 6.9 10.2 8.7
Posterior testis to cirrus-sac % 0 0 0 0 0 0 0 0 0
Cirrus-sac length % 17.3 25.2 22.0 21.0 24.3 22.3 25.4 36.9 30.5
Seminal vesicle length % of cirrus-sac length 30.1 55.7 43.6 ? ? ? 37.7 61.4 48.8
Post-testicular distance % 18.7 29.3 23.1 17.8 28.5 23.0 37.8 45.6 41.3
Post-vitelline distance % 32.2 45.1 38.5 31.1 38.2 35.7 50.5 59.3 54.7
Cirrus-sac reach % 26.6 35.1 31.2 29.0 33.7 31.4 42.6 50.9 46.3
Post-ovarian distance % 28.9 44.0 34.9 28.7 35.0 32.4 51.8 58.5 55.1
Post-genital pore distance % 2.12 6.29 4.17 2.89 5.65 4.60 10.24 14.96 11.72
Table 10.

Comparisons of Prosorhynchus freitasi, blue shading shows major distinctions, green shading minor distinctions.

length width % Rhynchus L % Previtelline % Pre-Uterine % Pre-mouth % Post-testicular % Cirrus-sac reach % Eggs Reference
P. freitasi ex Plectropomus leopardus 848–1,506 12–20 4–5 35–47 38–55 63–68 19–29 28–35 24–30 × 13–21 new data
P. freitasi ex Plectropomus laevis 1,365–1,591 14–20 4 44–54 50–59 67–72 18–24 29–34 24–28 × 16–19 new data
P. freitasi Nagaty, 1937 919–1,870 10–23 4–6 49–50 61 63–65 22–26 27–28 21–29 × 17–21 [27]
P. freitasi Nagaty, 1937 1,216–1,564 12–17 4–5 39 46 60 29 ? 24–26 × 14–15 [3]
P. arabiana Srivastava, 1938 3,3004,500 12–13 6–9 64 41 62 18 22 23 × 12 [43]
P. heronensis Bott, Miller & Cribb, 2013 1,040–1,104 15–19 8 45 55 70 17 ? 26–27 × 13–15 [3]
P. indicus Madhavi, 1974 3,3604,480 11–12 4–5 50 37 60 16 19 1719 × 811 [23]
P. lesteri Bott, Miller & Cribb, 2013 1,341–2,320 13–18 1011 41 51 60 23 30 19–26 × 14–15 [3]
P. milleri Bott & Cribb, 2009 1,392–1,648 13–14 9 31 51 56 24 25 25 × 16 [2]
P. munozae Bott, Miller & Cribb, 2013 700–1,040 17–18 4–6 46 57 68 24 28 31–36 × 19–23 [3]
P. orientalis Gupta & Ahmad, 1976 3,600 8 5 47 47 65 14 14 22–30 × 11–17 [17]
P. plectropomi Bott, Miller & Cribb, 2013 1,024–1,280 13–16 4–5 47 44 66 24 29 24–26 × 14–15 [3]
P. stunkardi Siddiqi & Cable, 1960 1,056–1,227 16–22 5–10 38 58 56 20 24 1618 × 1115 [41]
P. thapari Manter, 1953 1,778–2,282 15–16 12 33 44 53 25 28 27–34 × 19–22 [25]
P. truncatus Verma, 1936 1,760–2,600 23–24 1620 30 ? 63 21 20 3540 × 1820 [46]
P. wrightae Bott, Miller & Cribb, 2013 800–1,088 16–21 6–7 38 30 66 22 33 20–24 × 12–13 [3]

In terms of the parameters used in the visual key there are no differences between our specimens from Plectropomus laevis and Prosorhynchus freitasi as described from “Serranus guttatus” from the Red Sea [29]. According to Froese & Pauly [15] S. guttatus is now known as the peacock hind Cephalopholis argus (Bloch) (Serranidae). It has also been reported in Epinephelus sp. and the spotted coralgrouper Plectropomus maculatus (Bloch) (Serranidae) from off New Caledonia [9] and Plectropomus leopardus and Plectropomus laevis from the Great Barrier Reef [3]. It has an unusual morphology in that all the internal organs are restricted to the posterior half of the body and the rhynchus is relatively small.

Bott et al. [3] described six Prosorhynchus species from Plectropomus spp. on the Great Barrier Reef, five of which are new and one, P. freitasi already known. They are mostly distinguished by minor morphological characters and by analysis of ITS2 rDNA sequences. P. lesteri is distinguished by its distinctly larger rhynchus. P. wrightae differs in the pre-uterine extent, being the only one of these species where the uterus extends well beyond the vitellarium anteriorly. P. heronensis also has a larger rhynchus, although not as large as in P. lesteri, and a distinct U-shaped seminal vesicle. In P. plectropomi the uterus extends to, or just anterior to the anterior extent of the vitellarium, apparently forcing the anterior follicles apart, breaking up the continuous arc found in other related species. P. munozae is a rather small worm, but with larger eggs. Our specimens agree closely with Bott et al.’s [3] description of P. freitasi.

Prosorhynchus luzonicus Velasquez, 1959 (Figures 15, 16)

urn:lsid:zoobank.org:act:25F350A1-F852-4CA9-91D8-A288F9B3F7DD

Host: Epinephelus coioides (Hamilton) (Serranidae), orange-spotted grouper.

Site: Digestive tract.

Locality: Fish Market, Nouméa (14/10/2010).

Prevalence: 1 of 1.

Vouchers: MNHN JNC3277; BMNH 2013.11.18.24.

Discussion

See Table 9 for measurements and Table 11 for morphological comparisons. These specimens from E. coioides are clearly different from those from this host mentioned below as Prosorhynchus sp. B, particularly in pre-mouth distance (see Table 13) and vitelline distribution, but also in post-testicular distance and cirrus-sac reach. On the other hand they are very similar to P. luzonicus as originally described [48] from the barramundi Lates calcarifer (Bloch), (Latidae) from Malabon, Rizal, Luzon island, Philippines. It has been reported in E. coioides in Lampung Bay, southern Sumatra, Indonesia [3436]. Rückert [35] described and illustrated this species from Epinephelus fuscoguttatus, also from Lampung Bay, and later reported it again in this host, both in culture and in the wild [38]. It is slightly disconcerting that Rückert et al. [37] failed to find this species in L. calcarifer in her study of Lampung Bay. Two useful, but not infallible, recognition features are the separated vitelline fields (occasionally they appear to form an arch), and the mainly postovarian uterus (but according to the figure and illustration by Rückert [35] this is not invariable). Our specimens differ slightly from Velasquez’s [48] description in the greater extent of the cirrus-sac reach as a proportion of body-length (43–51% vs. about 38%). Rückert [35] shows a proportion of about 39%.

Table 11.

Comparisons of Prosorhynchus luzonicus, green shading shows minor distinctions.

  Length Width % Rhynchus L % Previtelline % Pre-Uterine % Pre-mouth % Post-testicular % Cirrus-sac reach % Eggs Reference
P. luzonicus Velasquez, 1959 792–1,172 16–25 13–18 16–21 31–47 38–44 38–46 43–51 27–35 × 15–20 new data
P. luzonicus Velasquez, 1959 1,060–2,020 22–25 10–19 20 42 39 38 38 30–39 × 17–24 [45]
P. jexi Bott & Cribb, 2009 1,104–1,424 19–25 15 20 32 43 41 37 32–33 × 16 [2]
P. maternus Bray & Justine, 2006 2,0522,227 19–21 13–17 19–23 34–41 38–40 4553 3239 27–28 × 14–22 [5]
P. pacificus Manter, 1940 1,206–1,444 25–27 14–16 31 47 45 37 42 2427 × 1217 [24]
P. pacificus Manter, 1940, types 1,232–1,359 26–30 18–19 2630 41–46 4648 38–49 44–48 28–31 × 15–16 [5]
P. robertsthomsoni Bott & Cribb, 2009 1,072–1,408 18–23 10–11 27 24 48 31 35 29–30 × 16 [2]
P. robertsthomsoni Bott & Cribb, 2009 1,088–1,256 23–24 10–12 18–23 1026 4547 3140 39–48 32–38 × 16–20 new data
P. squamatus Odhner, 1905 1,000–1,500 34 10–15 12 22 49 28 34 29–32 × ? [30]
Table 13.

Comparisons of Prosorhynchus spp. from Epinephelus spp., blue shading shows major distinctions, green shading minor distinctions.

  Length Width % Rhynchus L % Previtelline % Pre-Uterine % Pre-mouth % Post-testicular % Cirrus-sac reach % Eggs Reference
P. sp. in Epinephelus morrhua 2,110–2,157 22–24 16–24 11–14 25 48–50 27–42 41–43 35 new data
P. epinepheli Yamaguti, 1939 1,250–2,350 4043 14–19 14 22 54 41 41 2830 × 1821 [51]
P. sp. in Epinephelus coioides 1,006–1,297 22–23 13–15 19–22 44–48 51–57 30–32 27–37 29–32 × 18–21 new data
P. caudovatus Manter, 1940 2,0004,000 17–20 10–17 18–31 25–46 3944 3846 29–35 3845 × 1922 [10]
P. caudovatus Manter, 1940 1,7152,245 27–30 3243 × 2125 [14]
P. caudovatus Manter, 1940 3,672 12 11 21 37 38 50 36 [4]
P. milleri Bott & Cribb, 2009 1,392–1,648 1314 9 31 51 56 24 25 25 × 16 [2]
P. pacificus Manter, 1940 1,206–1,444 25–27 1416 31 47 45 37 42 2427 × 1217 [23]
P. pacificus Manter, 1940, types 1,232–1,359 26–30 1819 2630 41–46 4648 3849 4448 28–31 × 15–16 [5]
P. paracrucibulus Velasquez, 1959 1,096–1,600 3036 12–16 23 ? 57 34 27 none [45]
P. truncatus Verma, 1936 1,7602,600 23–24 16–20 30 ? 63 21 20 3540 × 1820 [46]

Prosorhynchus jexi is similar, but differs in cirrus-sac extent, in the arched vitelline fields and in the extension of the uterus anterior to the ovary (but note that these latter features appear to be variable in P. luzonicus) [2, 9].

Prosorhynchus maternus Bray & Justine, 2006 from the Malabar grouper Epinephelus malabaricus (Bloch & Schneider) off New Caledonia [5] differs in size, post-testicular region and cirrus-sac reach.

Prosorhynchus pacificus Manter, 1940 is an eastern Pacific form, having been reported originally from the serranids, the sailfin grouper Mycteroperca olfax (Jenyns), the broomtail grouper Mycteroperca xenarcha Jordan and an unidentified grouper off the Galapagos [24]. Later records were summarised by Bray & Justine [5], who re-measured two type-specimens. Slight differences from our specimens can be detected in previtelline, pre-mouth and post-testicular distances, cirrus-sac reach and egg-size range. Some specimens from cultured E. coioides in Vietnam have been identified as this species, others as P. epinepheli [51].

Prosorhynchus robertsthomsoni (see above, including new data) differs slightly in pre-uterus, pre-mouth and post-testicular distances [2].

Prosorhynchus squamatus Odhner, 1905 is a Northern Hemisphere species, originally reported from the shorthorn sculpin Myoxocephalus scorpius (Linnaeus) (Cottidae) [32], but since reported in many cold-water hosts [16, 21]. It differs from P. luzonicus in width, previtelline, pre-uterine, pre-mouth and post-testicular distances, cirrus-sac reach and probably in its arched vitellarium and pre-ovarian uterine extent.

Prosorhynchus sp. A (Figure 17)

Epinephelus morrhua (Valenciennes, 1833), Serranidae, comet grouper.

Site: digestive tract.

Locality: Off Récif Kué, deep-sea (22°35′511S, 166°9′893E, 23/01/2008).

Prevalence: 1 of 4 (25%).

Vouchers: MNHN JNC2453; BMNH 2013.11.18.26.

Discussion

No species are identical to these two specimens according to the visual key (Tables 12, 13). As only one specimen is in good condition, the worms have not been described as new, but the very elongate rhynchus seems to be a distinguishing feature. Also note that the ovary lies beside the anterior testis.

Table 12.

Measurements and ratios of Prosorhynchus spp. from Epinephelus spp. % refers to % of body-length.

Species Prosorhynchus sp. A
Prosorhynchus sp. B
Host Epinephelus morrhua
Epinephelus coioides
n 2
3
min. max. mean
Length 2,157 2,110 1,006 1,297 1,199
Width 470 508 217 294 266
Previtelline distance 310 222 217 263 244
Precaecal distance ? 888 306 414 357
Pre-uterine distance 540 ? 451 621 545
Pre-mouth distance 1,035 1,062 570 685 637
Pretesticular distance 964 1,175 556 769 694
Pre-ovarian distance 1,002 1,186 584 729 675
Rhynchus length 513 335 155 175 165
Rhynchus width 231 320 121 155 142
Rhynchus to vitellarium distance 0 malformed 61 95 82
Rhynchus to uterus distance 30 malformed 292 446 379
Rhynchus to caecum distance ? 555 148 237 191
Long vitelline field 454 ? 220 262 237
Short vitelline field 478 ? 217 275 239
Caecum length ? 275 183 241 217
Caecum width ? 253 113 129 122
Pharynx length 112 126 64 85 78
Pharynx width 104 108 80 114 97
Ovary length 147 146 57 77 64
Ovary width 137 142 50 69 58
Distance between ovary and anterior testis 0 0 0 9 3
Anterior testis length 181 202 70 94 80
Anterior testis width 161 197 75 81 77
Distance between testes 0 0 0 45 15
Posterior testis length 168 171 75 82 78
Posterior testis width 170 169 64 78 73
Posterior testis to cirrus-sac 0 0 0 30 15
Cirrus-sac length 611 593 233 266 251
Cirrus-sac width 198 251 80 120 102
Seminal vesicle length 226 182 ? 123 41
Seminal vesicle width 68 74 ? 53 18
Pars prostatica length 791 861 ? ? ?
Pars prostatica width 142 159 56 84 73
Post-testicular distance 905 569 324 394 368
Post-vitelline distance 1,348 0 566 803 708
Cirrus-sac reach 927 863 355 379 369
Post-ovarian distance 1,001 797 348 519 459
Post-genital pore distance 97 96 42 57 49
Egg length 35 malformed 29 32 30
Egg width 18 malformed 18 21 19
Width % 21.8 24.1 21.6 22.7 22.2
Previtelline distance % 14.4 10.5 19.3 21.6 20.4
Precaecal distance % ? 42.09 27.0 31.9 29.8
Pre-uterine distance % 25.02 ? 43.5 47.9 45.4
Pre-mouth distance % 48.0 50.3 50.6 56.7 53.4
Pretesticular distance % 44.7 55.7 55.3 59.3 57.7
Pre-ovarian distance % 46.4 56.2 54.9 58.1 56.4
Rhynchus length % 23.8 15.9 12.6 15.4 13.9
Rhynchus width % rhynchus length 44.9 95.4 78.1 91.0 85.8
Longest vitelline field % 21.1 ? 17.6 21.9 19.9
Caecal length % ? 13.0 17.5 18.6 18.1
Ovary length % 6.81 6.92 4.41 5.96 5.36
Anterior testis length % 8.41 9.59 5.99 7.22 6.71
Distance between testes % 0 0 0 3.44 1.15
Posterior testis % 7.79 8.12 5.78 8.13 6.63
Posterior testis to cirrus-sac % 0 0 0 2.34 1.14
Cirrus-sac length % 28.3 28.1 18.0 26.5 21.3
Seminal vesicle length % of cirrus-sac length 37.0 30.8 ? 46.3 ?
Post-testicular distance % 42.0 27.0 29.7 32.3 30.8
Post-vitelline distance % 62.5 0.0 56.3 61.9 58.8
Cirrus-sac reach % 43.0 40.9 27.4 37.0 31.2
Post-ovarian distance % 46.4 37.8 34.6 40.0 38.0
Post-genital pore distance % 4.48 4.53 3.65 4.39 4.08

One species, Prosorhynchus epinepheli, has one major distinguishing feature in the visual key, i.e., width (Table 13). Minor distinguishing features are the pre-mouth distance and the egg-size.

Prosorhynchus sp. B. (Figure 18)

Host: Epinephelus coioides (Hamilton, 1822) (Serranidae), orange-spotted grouper.

Site: Digestive tract.

Locality: Fish Market, Nouméa (27/11/2009).

Prevalence: 1 of 1.

Vouchers: MNHN JNC3140; BMNH 2013.11.18.27.

Discussion

Measurements of the three specimens are given in Table 12. Several species are very similar to Prosorhynchus sp. B, and show no differences in the visual key but may be distinguished by combinations of minor features (Table 13). More specimens are needed to describe this form as new as so many similar Prosorhynchus species are known.

Prosorhynchus caudovatus Manter, 1940 (syn. P. crucibulus of Eckmann (1932)) from serranids in the waters around Africa [4, 10, 13, 14, 46] has a distinctive filamented egg. It is also distinctly larger than P. sp. B, has a more anterior mouth and a longer post-testicular region.

Prosorhynchus milleri Bott & Cribb, 2009 based on two specimens from Variola louti from Lizard Island, Great Barrier Reef [2] is longer, narrower, with a smaller rhynchus, a longer previtelline region and a shorter post-testicular region. The vitelline fields reach to the pharynx (vs. distinctly anterior).

Prosorhynchus pacificus belongs to a group of Prosorhynchus spp. with the uterus restricted to the post-ovarian region. In this aspect it differs from P. sp. B. It also differs in previtelline distance, pre-mouth distance, post-testicular region and cirrus-sac reach. The vitelline fields reach the ovary (vs. well anterior to the pharynx).

Prosorhynchus paracrucibulus Velasquez, 1959 based on three non-ovigerous worms (presumably metacercariae) from the scales (!) of the Buru glass perchlet Ambassis buruensis Bleeker (Ambassidae) Manila Bay, Paranaque, Rizal, Luzon Island, Philippines [48]. It is a little wider, with symmetrical testes. The worm is not developed sufficiently enough to recognise, but conceivably it is the metacercaria of a serranid parasite.

Prosorhynchus truncatus Verma, 1936 is based on two specimens, one ovigerous and lost and the other without eggs, from the intestine of the river catfish Cephalocassis jatia (Hamilton) (as Arius j.) (Ariidae) off Puri, Bay of Bengal [49]. It is considerably longer than P. sp. It also differs in previtelline distance, pre-mouth distance, post-testicular region and cirrus-sac reach.

Prosorhynchus specimens from cultured E. coioides in Vietnam have been identified as Prosorhynchus luzonicus and P. epinepheli [51].

Prosorhynchus sp. immature

Host: Epinephelus coeruleopunctatus (Bloch, 1790)

Site: Digestive tract.

Locality: Îlot Lebris, off Ouano (21°50′S, 166°45′E, 25/10/2007).

Prevalence: 1 of 3.

Vouchers: MNHN JNC2338.

Discussion

A single unidentifiable immature specimen was recovered from this host species.

Conclusions

The molecular evidence presented by Bott et al. [3] indicated that there are many distinct, but very similar species of prosorhynchines in serranids, especially Epinephelus and Plectropomus. The morphological similarity of these forms has led to many problems in identification, and some unlikely combinations of hosts in the literature, as for example the quoted hosts for Neidhartia neidharti, which in addition to serranids, includes a belonid and a freshwater siluriform. Recent molecular studies of a wide range of digeneans have indicated that most species exhibit oioxenous or stenoxenous specificity and “that no euryxenous host distribution should be accepted on the basis of morphology only” [28]. Although it is dangerous to identify parasites solely on the basis of their hosts, consideration should be taken of the relatedness of the hosts and the geographical distribution.

Cribb et al. [8] discussed the digenean fauna of epinepheline serranids and found that Prosorhynchus was the commonest parasite, both in the Atlantic/Eastern Pacific region and the Indo-West Pacific Region, and is the only bucephalid genus which has “apparently strongly radiated within the Epinephelinae”. Since that paper [8] our knowledge of epinepheline bucephalids has increased markedly [2, 3, 5] reinforcing that point, but suggesting that Neidhartia has also radiated, at least in the Indo-West Pacific region. The morphological distinctions between Prosorhynchus and Neidhartia are minor, but molecular evidence [3] indicates that these distinctions are reflected by the molecules. Those species of Prosorhynchus with a variable ovary configuration (e.g., P. epinepheli, P. longisaccatus) may invalidate this distinction, or may belong to either monophyletic genus.

Acknowledgments

Julie Mounier, Charles Beaufrère, Anaïs Guillou, Audrey Guérin, Damien Hinsinger, Éric Bureau, Chloé Journo, Violette Justine, Amandine Marie, Aude Sigura, Guilhem Rascalou, Géraldine Colli, Lenaïg Hemery, Pierpaolo Brena, Cyndie Dupoux, Isabelle Mary, Adeline Grugeaud, and Marine Briand, students, participated in the parasitological survey. Claude Chauvet (UNC, Nouméa) caught several fishes. Angelo di Matteo (IRD) provided technical help. Certain fishes were identified from photographs by Ronald Fricke (Staatliches Museum für Naturkunde, Stuttgart, Germany) or by Jack Randall (Bishop Museum, Hawaii). The authors wish to report that there are no competing interests.

Cite this article as: Bray RA & Justine J-L: Bucephalidae (Digenea) from epinephelines (Serranidae: Perciformes) from the waters off New Caledonia, including Neidhartia lochepintade n. sp. Parasite, 2013, 20, 56.

References

  • 1.Bilqees FM, Khalil B, Khan A, Perveen S, Muti-ur-Rehman. 2009. Description of a new species of genus Prosorhynchus Odhner, 1905 (Trematoda: Bucephalidae: Prosorhynchinae) from the fish Caranx affinis (Rupp.) of Karachi coast. Proceedings of Parasitology, 48, 33–42 [Google Scholar]
  • 2.Bott NJ, Cribb TH. 2009. Prosorhynchine trematodes (Digenea: Bucephalidae) from epinephelines (Perciformes: Serranidae) on the Great Barrier Reef, Australia. Systematic Parasitology, 72, 57–69 [DOI] [PubMed] [Google Scholar]
  • 3.Bott NJ, Miller TL, Cribb TH. 2013. Bucephalidae (Platyhelminthes: Digenea) of Plectropomus (Serranidae: Epinephelinae) in the tropical Pacific. Parasitology Research, 112, 2561–2584 [DOI] [PubMed] [Google Scholar]
  • 4.Bray RA. 1984. Some helminth parasites of marine fishes and cephalopods of South Africa: Aspidogastrea and the digenean families Bucephalidae, Haplosplanchnidae, Mesometridae and Fellodistomidae. Journal of Natural History, 18, 271–292 [Google Scholar]
  • 5.Bray RA, Justine J-L. 2006. Prosorhynchus maternus sp. n. (Digenea: Bucephalidae) from the Malabar grouper Epinephelus malabaricus (Perciformes: Serranidae) off New Caledonia. Folia Parasitologica, 53, 181–188 [DOI] [PubMed] [Google Scholar]
  • 6.Bray RA, Palm HW. 2009. Bucephalids (Digenea: Bucephalidae) from marine fishes off the south-western coast of Java, Indonesia, including the description of two new species of Rhipidocotyle and comments on the marine fish digenean fauna of Indonesia. Zootaxa, 2223, 1–24 [Google Scholar]
  • 7.Chauhan BS. 1943. Trematodes from Indian marine fishes. II. On some trematodes of the gasterostome family Bucephalidae (Braun, 1883) Poche, 1907, with description of four new species. Proceedings of the Indian Academy of Sciences, 17, 97–117 [Google Scholar]
  • 8.Cribb TH, Bray RA, Wright T, Pichelin S. 2002. The trematodes of groupers (Serranidae: Epinephelinae): knowledge, nature and evolution. Parasitology, 124, S23–S42 [DOI] [PubMed] [Google Scholar]
  • 9.Durio WO, Manter HW. 1968. Some digenetic trematodes of marine fishes of New Caledonia. Part I. Bucephalidae, Monorchiidae, and some smaller families. Proceedings of the Helminthological Society of Washington, 35, 143–153 [Google Scholar]
  • 10.Eckmann F. 1932. Beiträge zur Kenntnis der Trematodenfamilie Bucephalidae. Zeitschrift für Parasitenkunde, 5, 92–111 [Google Scholar]
  • 11.El-Naffar MKI, Gobashy A, El-Etreby SC, Kardousha MM. 1992. General survey of helminth parasite genera of Arabian Gulf fishes (coasts of United Arab Emirates). Arab Gulf Journal of Scientific Research, 10, 99–110 [Google Scholar]
  • 12.Etchegoin JA, Timi JT, Cremonte F, Lanfranchi AL. 2005. Redescription of Prosorhynchus australis Szidat, 1961 (Digenea, Bucephalidae) parasitizing Conger orbignianus Valenciennes, 1842 (Pisces, Congridae) from Argentina. Acta Parasitologica, 50, 102–104 [Google Scholar]
  • 13.Fischthal JH. 1980. Some digenetic trematodes of marine fishes from Israel’s Mediterranean coast and their zoogeography, especially those from Red Sea immigrant fishes. Zoologica Scripta, 9, 11–23 [Google Scholar]
  • 14.Fischthal JH, Thomas JD. 1968. Digenetic trematodes of marine fishes from Ghana: Families Acanthocolpidae, Bucephalidae, Didymozoidae. Proceedings of the Helminthological Society of Washington, 35, 237–247 [Google Scholar]
  • 15.Froese R, Pauly D. 2013. FishBase. World Wide Web electronic publication. Available on http://www.fishbase.org
  • 16.Gibson DI. 1996. Guide to the parasites of fishes of Canada Part IV: Trematoda. Canadian Special Publication of Fisheries and Aquatic Sciences, 124(I-IX), 1–338 [Google Scholar]
  • 17.Gupta V, Ahmad J. 1976. Digenetic trematodes of marine fishes. On some new and known digenetic trematodes of the family Bucephalidae Poche, 1907 from marine fishes of Puri, Orissa, India. Anales del Instituto de Biología, Universidad de México, Serie Zoología, 47, 9–18 [Google Scholar]
  • 18.Hafeezullah M, Siddiqi AH. 1970. Digenetic trematodes of marine fishes of India. Part I. Bucephalidae and Cryptogonimidae. Indian Journal of Helminthology, 22, 1–22 [Google Scholar]
  • 19.Justine J-L, Beveridge I, Boxshall GA, Bray RA, Moravec F, Trilles J-P, Whittington ID. 2010. Parasite biodiversity in coral reef fish: an annotated list of parasites (Isopoda, Copepoda, Monogenea, Digenea, Cestoda and Nematoda) collected in groupers (Serranidae, Epinephelinae) in New Caledonia. Folia Parasitologica, 57, 237–262 [DOI] [PubMed] [Google Scholar]
  • 20.Justine J-L, Dupoux C, Cribb TH. 2009. Resolution of the discrepant host-specificity of Pseudorhabdosynochus species (Monogenea, Diplectanidae) from serranid fishes in the tropical Indo-Pacific. Acta Parasitologica, 54, 119–130 [Google Scholar]
  • 21.Køie M. 2000. Metazoan parasites of teleost fishes from Atlantic waters off the Faroe Islands. Ophelia, 52, 25–44 [Google Scholar]
  • 22.Ku C-t, Shen J-w. 1975. Studies on the genus Rhipidocotyle Diesing (Bucephalidae, Trematoda) from some marine fishes of China. Acta Zoologica Sinica, 21, 205–211(in Chinese) [Google Scholar]
  • 23.Madhavi R. 1974. Digenetic trematodes from marine fishes of Waltair Coast, Bay of Bengal. Family Bucephalidae. Rivista di Parassitologia, 35, 189–199 [Google Scholar]
  • 24.Manter HW. 1940. Digenetic trematodes of fishes from the Galapagos Islands and the neighboring Pacific. Allan Hancock Pacific Expeditions, 2, 325–497 [Google Scholar]
  • 25.Manter HW. 1940. Gasterostomes (Trematoda) of Tortugas, Florida. Papers from the Tortugas Laboratory of the Carnegie Institute of Washington, 33, 1–19 [Google Scholar]
  • 26.Manter HW. 1953. Two new species of Prosorhynchinae (Trematoda: Gasterostomata) from the Fiji Islands, in Thapar, G. S., Commemoration Volume, 1953, Dayal J, Singh K, Eds.University of Lucknow: Lucknow: p. 193–200 [Google Scholar]
  • 27.Maurya AK, Agarwal GP, Singh SPN. 1993. Studies on some known and unknown eucephalid [sic] trematodes from the fresh water fishes. Journal of Scientific Research of the Banaras Hindu University, 43, 61–72 [Google Scholar]
  • 28.Miller TL, Bray RA, Cribb TH. 2011. Taxonomic approaches to and interpretation of host specificity of trematodes of fishes: lessons from the Great Barrier Reef. Parasitology, 138, 1710–1722 [DOI] [PubMed] [Google Scholar]
  • 29.Nagaty HF. 1937. Trematodes of fishes from the Red Sea. Part 1. Studies on the family Bucephalidae Poche, 1907. Cairo: Egyptian University [Google Scholar]
  • 30.Nahhas FM, Cable RM. 1964. Digenetic and aspidogastrid trematodes from marine fishes of Curaçao and Jamaica. Tulane Studies in Zoology, 11, 169–228 [Google Scholar]
  • 31.Nahhas FM, Carlson K. 1994. Digenetic trematodes of marine fishes of Jamaica, West Indies. Publications of the Hofstra University Marine Laboratory, Ecological Survey of Jamaica, 2, 1–60 [Google Scholar]
  • 32.Odhner T. 1905. Die Trematoden des arktischen Gebietes. Fauna Arctica, 4, 289–374 [Google Scholar]
  • 33.Overstreet RM, Curran SS. 2002. Superfamily Bucephaloidea Poche, 1907, in Keys to the Trematoda, Volume 1, Gibson DI, Jones A, Bray RA, (Eds.) CABI Publishing and the Natural History Museum: Wallingford, p. 67–110 [Google Scholar]
  • 34.Palm HW, Rückert S. 2009. A new approach to visualize ecosystem health by using parasites. Parasitology Research, 105, 539–553 [DOI] [PubMed] [Google Scholar]
  • 35.Rückert S. 2006. Marine Fischparasiten in Indonesien: Befallssituation und Bedeutung für die Marikultur von Zackenbarschen, in Mathematisch-Naturwissenschaftlichen Fakultät. Heinrich-Heine-Universität Düsseldorf: Düsseldorf: p. 240 [Google Scholar]
  • 36.Rückert S, Klimpel S, Al-Quraishy S, Mehlhorn H, Palm HW. 2009. Transmission of fish parasites into grouper mariculture (Serranidae: Epinephelus coioides (Hamilton, 1822)) in Lampung Bay, Indonesia. Parasitology Research, 104, 523–532 [DOI] [PubMed] [Google Scholar]
  • 37.Rückert S, Klimpel S, Palm HW. 2008. Parasite fauna of seabass (Lates calcarifer) under mariculture conditions in Lampung Bay, Indonesia. Journal of Applied Ichthyology, 24, 321–327 [Google Scholar]
  • 38.Rückert S, Klimpel S, Palm HW. 2010. Parasites of cultured and wild brown-marbled grouper Epinephelus fuscoguttatus (Forsskal, 1775) in Lampung Bay, Indonesia. Aquaculture Research, 41, 1158–1169 [Google Scholar]
  • 39.Saoud MFA, Ramadan MM, Al Kawari KSR. 1986. Helminth parasites of fishes from the Arabian Gulf. 1. Preliminary general survey of fishes mainly from Qatari waters. Qatar University Science Bulletin, 6, 199–229 [Google Scholar]
  • 40.Saoud MFA, Ramadan MM, Al Kawari KSR. 1989. Helminth parasites of fishes from the Arabian Gulf. 6. On three species of digenetic trematodes: Prosorhynchus epinepheli Yamaguti, 1939; Paraproctotrema qatarensis n. sp. and Prosorchis breviformis Srivastava, 1936. Rivista di Parassitologia, 49, 79–85 [Google Scholar]
  • 41.Shen J-w. 1990. Digenetic trematodes of marine fishes from Hainan Island. Science Publications: Beijing: (in Chinese, English summary) [Google Scholar]
  • 42.Shen J-w, Qiu Z-z. 1995. Studies on the trematodes of fishes from the Yellow Sea and the Bo Hai Sea. Science Press: Beijing: (in Chinese) [Google Scholar]
  • 43.Siddiqi AH, Cable RM. 1960. Digenetic trematodes of marine fishes of Puerto Rico. Scientific Survey of Porto Rico and the Virgin Islands, 17, 257–369 [Google Scholar]
  • 44.Srivastava HD. 1938. Studies on the gasterostomatous parasites of Indian food fishes. Indian Journal of Veterinary Science and Animal Husbandry, 8, 317–339 [Google Scholar]
  • 45.Suriano DM, Martorelli SR. 1983. Estudios parasitologicos en la albufera de Mar Chiquita, provincia de Buenos Aires, Republica Argentina. 1. Steringotrema microacetabularis sp. nov., Prosorhynchus longisaccatus Durio & Manter, 1968 y Lobatostoma ringens (Linton) Eckmann, 1932 (Trematoda) parasites de peces Pleuronectiformes. Neotropica, 29, 195–207 [Google Scholar]
  • 46.Szuks H. 1981. Bucephaliden (Trematoda: Digenea) aus Fischen der Küstengewässer Nordwestafrikas. Wissenschaftliche Zeitschrift der Pädagogischen Hochschule “Liselotte Herrmann” Güstrow Aus der Mathematisch-Naturwissenschaftlichen Fakultät, 2, 167–178 [Google Scholar]
  • 47.Tsin SN. 1933. Parasitic trematodes in fishes of China. Journal of Science, 1, 379–392(in Chinese) [Google Scholar]
  • 48.Velasquez CC. 1959. Studies on the family Bucephalidae Poche 1907 (Trematoda) from Philippine food fishes. Journal of Parasitology, 45, 135–147 [PubMed] [Google Scholar]
  • 49.Verma SC. 1936. Studies on the family Bucephalidae (Gasterostomata), Part II. Descriptions of two new forms from Indian marine fishes. Proceedings of the National Academy of Sciences, India, 6, 252–260 [Google Scholar]
  • 50.Vigueras IP. 1955. Contribucion al conocimiento de la fauna helmintologica cubana. Memorias de la Sociedad Cubana de Historia Natural, 22, 21–71 [Google Scholar]
  • 51.Vo DT, Bristow GA, Nguyen DH, Vo DT, Nguyen TNN, Tran TC. 2011. Digenean trematodes of cultured grouper (Epinephelus coioides and E. bleekeri) in Khanh Hoa Province, Vietnam, in Diseases in Asian Aquaculture VII. Fish Health Section, Bondad-Reantaso MGet al. , Eds.Selangor, Malaysia: Asian Fisheries Society, p. 39–52 [Google Scholar]
  • 52.Yamaguti S. 1939. Studies on the helminth fauna of Japan. Part 26. Trematodes of fishes, VI. Japanese Journal of Zoology, 8, 211–230 [Google Scholar]

Articles from Parasite are provided here courtesy of EDP Sciences

RESOURCES