Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Oct;83(19):7452–7456. doi: 10.1073/pnas.83.19.7452

Identification of two calcium channel receptor sites for [3H]nitrendipine in mammalian cardiac and smooth muscle membrane.

R B Rogart, A deBruyn Kops, V J Dzau
PMCID: PMC386736  PMID: 2429306

Abstract

Various Ca-channel blockers differ in cardiovascular action despite common effects at the Ca channel. Many investigators have reported only a single high-affinity receptor for binding of [3H]nitrendipine, a dihydropyridine Ca-channel blocker. Its equilibrium dissociation constant (Kd) does not match the concentration of nitrendipine needed for a physiological effect on the mammalian cardiac Ca channel. The purpose of these studies was to clarify the existing discrepancy between pharmacological properties of nitrendipine receptors and the physiological effects of the dihydropyridine blockers. Of particular importance in this regard was to provide a pharmacological correlate for electrophysiological studies demonstrating multiple voltage-dependent conformational states of the Ca channel, which show differing affinities for the dihydropyridine Ca-channel blockers. By use of an improved ligand binding assay, our studies demonstrate both "high-affinity" and "low-affinity" [3H]nitrendipine receptors with Kd values corresponding well with observed physiologically effective nitrendipine concentrations. We detected two distinct populations of nitrendipine receptors in rat heart and bovine aortic membrane. A high-affinity Kd value of 0.2-0.3 nM was found, which seems to correspond to the physiologically functional state of the Ca channel in smooth muscle, since the Kd value is similar to the concentration at which nitrendipine inhibits contraction. However, in contrast to numerous other studies, we observed that the predominant component of [3H]nitrendipine binding (95-99%) had a low-affinity Kd value (235 nM). This putative low-affinity [3H]nitrendipine receptor may correspond to the physiologically functional state of the Ca channel in cardiac muscle.

Full text

PDF
7452

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bean B. P. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6388–6392. doi: 10.1073/pnas.81.20.6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bean B. P. Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol. 1985 Jul;86(1):1–30. doi: 10.1085/jgp.86.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellemann P., Ferry D., Lübbecke F., Glossman H. [3H]-Nitrendipine, a potent calcium antagonist, binds with high affinity to cardiac membranes. Arzneimittelforschung. 1981;31(12):2064–2067. [PubMed] [Google Scholar]
  4. Bolger G. T., Gengo P., Klockowski R., Luchowski E., Siegel H., Janis R. A., Triggle A. M., Triggle D. J. Characterization of binding of the Ca++ channel antagonist, [3H]nitrendipine, to guinea-pig ileal smooth muscle. J Pharmacol Exp Ther. 1983 May;225(2):291–309. [PubMed] [Google Scholar]
  5. Braunwald E. Mechanism of action of calcium-channel-blocking agents. N Engl J Med. 1982 Dec 23;307(26):1618–1627. doi: 10.1056/NEJM198212233072605. [DOI] [PubMed] [Google Scholar]
  6. Ferry D. R., Glossmann H. Evidence of multiple receptor sites within the putative calcium channel. Naunyn Schmiedebergs Arch Pharmacol. 1982 Oct;321(1):80–83. doi: 10.1007/BF00586355. [DOI] [PubMed] [Google Scholar]
  7. Gould R. J., Murphy K. M., Snyder S. H. [3H]nitrendipine-labeled calcium channels discriminate inorganic calcium agonists and antagonists. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3656–3660. doi: 10.1073/pnas.79.11.3656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hagiwara S., Byerly L. Calcium channel. Annu Rev Neurosci. 1981;4:69–125. doi: 10.1146/annurev.ne.04.030181.000441. [DOI] [PubMed] [Google Scholar]
  9. Hess P., Lansman J. B., Tsien R. W. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature. 1984 Oct 11;311(5986):538–544. doi: 10.1038/311538a0. [DOI] [PubMed] [Google Scholar]
  10. Lee K. S., Tsien R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983 Apr 28;302(5911):790–794. doi: 10.1038/302790a0. [DOI] [PubMed] [Google Scholar]
  11. Marsh J. D., Loh E., Lachance D., Barry W. H., Smith T. W. Relationship of binding of a calcium channel blocker to inhibition of contraction in intact cultured embryonic chick ventricular cells. Circ Res. 1983 Oct;53(4):539–543. doi: 10.1161/01.res.53.4.539. [DOI] [PubMed] [Google Scholar]
  12. McBride W., Mukherjee A., Haghani Z., Wheeler-Clark E., Brady J., Gandler T., Bush L., Buja L. M., Willerson J. T. Nitrendipine: effects on vascular responses and myocardial binding. Am J Physiol. 1984 Nov;247(5 Pt 2):H775–H783. doi: 10.1152/ajpheart.1984.247.5.H775. [DOI] [PubMed] [Google Scholar]
  13. Nilius B., Hess P., Lansman J. B., Tsien R. W. A novel type of cardiac calcium channel in ventricular cells. Nature. 1985 Aug 1;316(6027):443–446. doi: 10.1038/316443a0. [DOI] [PubMed] [Google Scholar]
  14. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  15. Nørby J. G., Ottolenghi P., Jensen J. Scatchard plot: common misinterpretation of binding experiments. Anal Biochem. 1980 Mar 1;102(2):318–320. doi: 10.1016/0003-2697(80)90160-8. [DOI] [PubMed] [Google Scholar]
  16. Renaud J. F., Romey G., Lombet A., Lazdunski M. Differentiation of the fast Na+ channel in embryonic heart cells: interaction of the channel with neurotoxins. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5348–5352. doi: 10.1073/pnas.78.9.5348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rogart R. B., Regan L. J., Dziekan L. C., Galper J. B. Identification of two sodium channel subtypes in chick heart and brain. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1106–1110. doi: 10.1073/pnas.80.4.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rogart R. B., Regan L. J. Two subtypes of sodium channel with tetrodotoxin sensitivity and insensitivity detected in denervated mammalian skeletal muscle. Brain Res. 1985 Mar 11;329(1-2):314–318. doi: 10.1016/0006-8993(85)90541-4. [DOI] [PubMed] [Google Scholar]
  19. Ruth P., Flockerzi V., von Nettelbladt E., Oeken J., Hofmann F. Characterization of the binding sites for nimodipine and (-)-desmethoxyverapamil in bovine cardiac sarcolemma. Eur J Biochem. 1985 Jul 15;150(2):313–322. doi: 10.1111/j.1432-1033.1985.tb09023.x. [DOI] [PubMed] [Google Scholar]
  20. Sanguinetti M. C., Kass R. S. Voltage-dependent block of calcium channel current in the calf cardiac Purkinje fiber by dihydropyridine calcium channel antagonists. Circ Res. 1984 Sep;55(3):336–348. doi: 10.1161/01.res.55.3.336. [DOI] [PubMed] [Google Scholar]
  21. Sarmiento J. G., Janis R. A., Katz A. M., Triggle D. J. Comparison of high affinity binding of calcium channel blocking drugs to vascular smooth muscle and cardiac sarcolemmal membranes. Biochem Pharmacol. 1984 Oct 15;33(20):3119–3123. doi: 10.1016/0006-2952(84)90066-2. [DOI] [PubMed] [Google Scholar]
  22. Striessnig J., Zernig G., Glossmann H. Ca2+ antagonist receptor sites on human red blood cell membranes. Eur J Pharmacol. 1985 Feb 5;108(3):329–330. doi: 10.1016/0014-2999(85)90460-1. [DOI] [PubMed] [Google Scholar]
  23. Tsien R. W. Calcium channels in excitable cell membranes. Annu Rev Physiol. 1983;45:341–358. doi: 10.1146/annurev.ph.45.030183.002013. [DOI] [PubMed] [Google Scholar]
  24. Weiland G. A., Oswald R. E. The mechanism of binding of dihydropyridine calcium channel blockers to rat brain membranes. J Biol Chem. 1985 Jul 15;260(14):8456–8464. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES