Abstract
Tyrosine hydroxylase [TyrOHase; L-tyrosine, tetrahydropteridine:oxygen oxidoreductase (3-hydroxylating), EC 1.14.16.2], an essential enzyme in the synthesis of catecholamines, is expressed normally by neurons in the brainstem but not by those in mature neocortex. When embryonic neocortex is transplanted into adult neocortex, TyrOHase-immunoreactive cells develop and continue to be present in the transplants for the life of the host animal. The percentage of transplant neurons that express TyrOHase is highly correlated with the age of the embryonic donor tissue at the time of transplantation. Many TyrOHase-immunoreactive cells are present in transplants from embryonic day 12 (E12) embryos. The labeled cells are frequently arrayed in striking clusters of cell bodies and their processes, which ramify densely within the transplants. Moderate numbers of cells are found scattered throughout transplants from E14 donors, while E17 donors consistently develop small numbers of TyrOHase-containing cells. Tissue removed for transplantation on the day before birth (E19) never contains cells that express TyrOHase. The TyrOHase-positive cells are mostly bipolar and stellate in shape and show neither immunoreactivity for other catecholamine-synthesizing enzymes nor catecholamine fluorescence. These results provide a demonstration of continued TyrOHase synthesis in central nervous system cells that normally do not express this enzyme. Because of these and similar results with other neurotransmitter enzymes, the transplantation paradigm is particularly useful as a technique for studying the factors that regulate enzyme induction and activity during development of the nervous system.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berger B., Verney C., Gaspar P., Febvret A. Transient expression of tyrosine hydroxylase immunoreactivity in some neurons of the rat neocortex during postnatal development. Brain Res. 1985 Nov;355(1):141–144. doi: 10.1016/0165-3806(85)90013-6. [DOI] [PubMed] [Google Scholar]
- Björklund A., Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 1979 Nov 30;177(3):555–560. doi: 10.1016/0006-8993(79)90472-4. [DOI] [PubMed] [Google Scholar]
- Cochard P., Goldstein M., Black I. B. Initial development of the noradrenergic phenotype in autonomic neuroblasts of the rat embryo in vivo. Dev Biol. 1979 Jul;71(1):100–114. doi: 10.1016/0012-1606(79)90085-x. [DOI] [PubMed] [Google Scholar]
- Das G. D., Hallas B. H. Transplantation of brain tissue in the brain of adult rats. Experientia. 1978 Oct 15;34(10):1304–1306. doi: 10.1007/BF01981434. [DOI] [PubMed] [Google Scholar]
- De la Torre J. C. An improved approach to histofluorescence using the SPG method for tissue monoamines. J Neurosci Methods. 1980 Oct;3(1):1–5. doi: 10.1016/0165-0270(80)90029-1. [DOI] [PubMed] [Google Scholar]
- Ebner F. F., Olschowka J. A., Jacobowitz D. M. The development of peptide-containing neurons within neocortical transplants in adult mice. Peptides. 1984 Jan-Feb;5(1):103–113. doi: 10.1016/0196-9781(84)90059-7. [DOI] [PubMed] [Google Scholar]
- Haycock J. W., Bennett W. F., George R. J., Waymire J. C. Multiple site phosphorylation of tyrosine hydroxylase. Differential regulation in situ by a 8-bromo-cAMP and acetylcholine. J Biol Chem. 1982 Nov 25;257(22):13699–13703. [PubMed] [Google Scholar]
- Higgins D., Iacovitti L., Joh T. H., Burton H. The immunocytochemical localization of tyrosine hydroxylase within rat sympathetic neurons that release acetylcholine in culture. J Neurosci. 1981 Feb;1(2):126–131. doi: 10.1523/JNEUROSCI.01-02-00126.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iacovitti L., Joh T. H., Albert V. R., Park D. H., Reis D. J., Teitelman G. Partial expression of catecholaminergic traits in cholinergic chick ciliary ganglia: studies in vivo and in vitro. Dev Biol. 1985 Aug;110(2):402–412. doi: 10.1016/0012-1606(85)90099-5. [DOI] [PubMed] [Google Scholar]
- Joh T. H., Park D. H., Reis D. J. Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: mechanism of enzyme activation. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4744–4748. doi: 10.1073/pnas.75.10.4744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landis S. C., Keefe D. Evidence for neurotransmitter plasticity in vivo: developmental changes in properties of cholinergic sympathetic neurons. Dev Biol. 1983 Aug;98(2):349–372. doi: 10.1016/0012-1606(83)90365-2. [DOI] [PubMed] [Google Scholar]
- Lazar M. A., Lockfeld A. J., Truscott R. J., Barchas J. D. Tyrosine hydroxylase from bovine striatum: catalytic properties of the phosphorylated and nonphosphorylated forms of the purified enzyme. J Neurochem. 1982 Aug;39(2):409–422. doi: 10.1111/j.1471-4159.1982.tb03962.x. [DOI] [PubMed] [Google Scholar]
- Le Douarin N. M., Smith J., Le Lièvre C. S. From the neural crest to the ganglia of the peripheral nervous system. Annu Rev Physiol. 1981;43:653–671. doi: 10.1146/annurev.ph.43.030181.003253. [DOI] [PubMed] [Google Scholar]
- Perlow M. J., Freed W. J., Hoffer B. J., Seiger A., Olson L., Wyatt R. J. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science. 1979 May 11;204(4393):643–647. doi: 10.1126/science.571147. [DOI] [PubMed] [Google Scholar]
- Pickel V. M., Joh T. H., Field P. M., Becker C. G., Reis D. J. Cellular localization of tyrosine hydroxylase by immunohistochemistry. J Histochem Cytochem. 1975 Jan;23(1):1–12. doi: 10.1177/23.1.234988. [DOI] [PubMed] [Google Scholar]
- Shiman R., Akino M., Kaufman S. Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J Biol Chem. 1971 Mar 10;246(5):1330–1340. [PubMed] [Google Scholar]
- Smart I. H., McSherry G. M. Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat. 1982 May;134(Pt 3):415–442. [PMC free article] [PubMed] [Google Scholar]
- Smart I. H., Smart M. Growth patterns in the lateral wall of the mouse telencephalon: I. Autoradiographic studies of the histogenesis of the isocortex and adjacent areas. J Anat. 1982 Mar;134(Pt 2):273–298. [PMC free article] [PubMed] [Google Scholar]
- Sochacka J. H., Woodruff R. C. Induction of male recombination in Drosophila melanogaster by injection of extracts of flies showing male recombination. Nature. 1976 Jul 22;262(5566):287–289. doi: 10.1038/262287a0. [DOI] [PubMed] [Google Scholar]
- Specht L. A., Pickel V. M., Joh T. H., Reis D. J. Immunocytochemical localization of tyrosine hydroxylase in processes within the ventricular zone of prenatal rat brain. Brain Res. 1978 Nov 10;156(2):315–321. doi: 10.1016/0006-8993(78)90511-5. [DOI] [PubMed] [Google Scholar]
- Specht L. A., Pickel V. M., Joh T. H., Reis D. J. Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. I. Early ontogeny. J Comp Neurol. 1981 Jun 20;199(2):233–253. doi: 10.1002/cne.901990207. [DOI] [PubMed] [Google Scholar]
- Specht L. A., Pickel V. M., Joh T. H., Reis D. J. Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. II. Late ontogeny. J Comp Neurol. 1981 Jun 20;199(2):255–276. doi: 10.1002/cne.901990208. [DOI] [PubMed] [Google Scholar]
- Stenevi U., Björklund A., Svendgaard N. A. Transplantation of central and peripheral monoamine neurons to the adult rat brain: techniques and conditions for survival. Brain Res. 1976 Sep 10;114(1):1–20. doi: 10.1016/0006-8993(76)91003-9. [DOI] [PubMed] [Google Scholar]
- Teitelman G., Baker H., Joh T. H., Reis D. J. Appearance of catecholamine-synthesizing enzymes during development of rat sympathetic nervous system: possible role of tissue environment. Proc Natl Acad Sci U S A. 1979 Jan;76(1):509–513. doi: 10.1073/pnas.76.1.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolinsky E., Patterson P. H. Tyrosine hydroxylase activity decreases with induction of cholinergic properties in cultured sympathetic neurons. J Neurosci. 1983 Jul;3(7):1495–1500. doi: 10.1523/JNEUROSCI.03-07-01495.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]










